Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide

Abstract

The chirality of single-walled carbon nanotubes affects many of their physical and electronic properties. Current production methods result in nanotubes of mixed chiralities, so facile extraction of specific chiralities of single-walled carbon nanotubes is an important step in their effective utilization. Here we show that the flavin mononucleotide, a common redox cofactor, wraps around single-walled carbon nanotubes in a helical pattern that imparts efficient individualization and chirality selection. The cooperative hydrogen bonding between adjacent flavin moieties results in the formation of a helical ribbon, which organizes around single-walled carbon nanotubes through concentric ππ interactions between the flavin mononucleotide and the underlying graphene wall. The strength of the helical flavin mononucleotide assembly is strongly dependent on nanotube chirality. In the presence of a surfactant, the flavin mononucleotide assembly is disrupted and replaced without precipitation by a surfactant micelle. The significantly higher affinity of the flavin mononucleotide assembly for (8,6)-single-walled carbon nanotubes results in an 85% chirality enrichment from a nanotube sample with broad diameter distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence emission (PLE) maps of HiPco–SWNT samples.
Figure 2: Helical wrapping motif of FMN around SWNTs.
Figure 3: PLE-assisted determination of FMN replacement by SDBS titration, zooming on (8,6)-SWNT.
Figure 4: Chirality-dependent affinity of FMN-wrapped SWNTs, as determined by SDBS titration.
Figure 5: Chirality, family and modality dependence of FMN-induced ES11 redshift for all PLE-observed nanotubes.
Figure 6: Enrichment of the (8,6) nanotube using (i) selective SDBS replacement of FMN on all but (8,6)-SWNTs, and (ii) addition of NaCl to salt out all SDBS-dispersed nanotubes.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001).

    Book  Google Scholar 

  2. Papadimitrakopoulos, F. & Ju, S.-Y., Purity rolled up in a tube. Nature 450, 486–487 (2007).

    Article  CAS  Google Scholar 

  3. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  4. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  5. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J., Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    Article  CAS  Google Scholar 

  6. Chen, F., Wang, B., Chen, Y. & Li, L.-J., Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 7, 3013–3017 (2007).

    Article  CAS  Google Scholar 

  7. Peng, X. et al., Optically active single-walled carbon nanotubes. Nature Nanotech. 2, 361–365 (2007).

    Article  CAS  Google Scholar 

  8. Chattopadhyay, D., Galeska, I. & Papadimitrakopoulos, F., A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370–3375 (2003).

    Article  CAS  Google Scholar 

  9. Kim, S. N., Luo, Z. & Papadimitrakopoulos, F., Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes. Nano Lett. 5, 2500–2504 (2005).

    Article  CAS  Google Scholar 

  10. Krupke, R., Hennrich, F., Lohneysen, H. v. & Kappes, M. M., Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  CAS  Google Scholar 

  11. Strano, M. S. et al., Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  12. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C., Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  13. Zheng, M. & Semke, E. D., Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007).

    Article  CAS  Google Scholar 

  14. Massey, V., The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283–296 (2000).

    Article  CAS  Google Scholar 

  15. Guiseppi-Elie, A., Lei, C. & Baughman, R. H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13, 559–564 (2002).

    Article  CAS  Google Scholar 

  16. Patolsky, F., Weizmann, Y. & Willner, I., Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43, 2113–2117 (2004).

    Article  CAS  Google Scholar 

  17. Lin, C. S., Zhang, R. Q., Niehaus, T. A. & Frauenheim, T., Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide: A theoretical study. J. Phys. Chem. C 111, 4069–4073 (2007).

    Article  CAS  Google Scholar 

  18. Ju, S. Y. & Papadimitrakopoulos, F., Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 655–664 (2008).

    Article  CAS  Google Scholar 

  19. Bachilo, S. M. et al., Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  20. Zheng, M. & Diner, B. A., Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490–15494 (2004).

    Article  CAS  Google Scholar 

  21. O'Connell, M. J., Eibergen, E. E. & Doorn, S. K., Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Nanotech. 4, 412–418 (2005).

    CAS  Google Scholar 

  22. Stryer, L. Biochemistry (W.H. Freeman & Company, New York, 1995).

    Google Scholar 

  23. Utsumi, S. et al., RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS. J. Colloid Interface Sci. 308, 276 (2007).

    Article  CAS  Google Scholar 

  24. Tao, F. & Bernasek, S. L., Understanding odd-even effects in organic self-assembled monolayers. Chem. Rev. 107, 1408–1453 (2007).

    Article  CAS  Google Scholar 

  25. Niyogi, S. et al., Selective aggregation of single-walled carbon nanotubes via salt addition. J. Am. Chem. Soc. 129, 1898–1899 (2007).

    Article  CAS  Google Scholar 

  26. Chou, S. G. et al., Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 94, 127402 (2005).

    Article  CAS  Google Scholar 

  27. Nikolaev, P. et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monooxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  CAS  Google Scholar 

  28. O'Connell, M. J. et al., Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  29. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C., Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  CAS  Google Scholar 

  30. Oyama, Y. et al., Photoluminescence intensity of single-wall carbon nanotubes. Carbon 44, 873–879 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Z. Luo, W. Kopcha and C. Badalucco for their help and S. Daniels for valuable discussions. This work has been supported mainly by Air Force Office of Scientific Research (AFOSR) FA9550-06-1-0030, and in part by National Science Foundation (NSF)-Nanoscale Interdisciplinary Research Team (NIRT) DMI-0422724, Army Research Office (ARO)-DAAD-19-02-1-10381, National Institute of Health (NIH)-ES013557 and the U.S. Army Medical Research W81XWH-05-1-0539.

Author information

Authors and Affiliations

Authors

Contributions

S.J. and F.P. conceived and designed the experiments. S.J. performed sample preparation along with PLE and UV-vis-NIR characterization. J.D. performed HRTEM analysis. S.J. and I.S. performed data analysis. S.J. and F.P. performed the molecular simulation. S.J. and F.P. co-wrote the paper.

Corresponding author

Correspondence to Fotios Papadimitrakopoulos.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, SY., Doll, J., Sharma, I. et al. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nature Nanotech 3, 356–362 (2008). https://doi.org/10.1038/nnano.2008.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing