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Aging clocks have provided one of the most important recent breakthroughs
inthe biology of aging, and may provide indicators for the effectiveness of
interventions in the aging process and preventive treatments for age-related
diseases. The reproducibility of accurate aging clocks has reinvigorated the
debate on whether a programmed process underlies aging. Here we show
that accumulating stochastic variationin purely simulated data is sufficient

to build aging clocks, and that first-generation and second-generation
aging clocks are compatible with the accumulation of stochastic variation
in DNA methylation or transcriptomic data. We find that accumulating
stochastic variation is sufficient to predict chronological and biological
age, indicated by significant prediction differences in smoking, calorie
restriction, heterochronic parabiosis and partial reprogramming. Although
our simulations may not explicitly rule out a programmed aging process,
our results suggest that stochastically accumulating changes in any set of
datathat have aground state at age zero are sufficient for generating

aging clocks.

Weismann'’s 1881 proposition suggested an aging program to benefit
species by freeing up resources fromolder individuals'. This hypothesis
was later largely rejected®”, for arange of reasons such as the circularity
of the argument and the assumption of group selection. Evolution-
ary theories of aging realized the vanishing force of natural selection
post-reproductively, notably stated in the disposable soma, muta-
tion accumulation and antagonistic pleiotropy theories of aging®®.
Mutations that abruptly limit post-reproductive life are observed in
semelparous species, whereas iteroparous species typically show a
gradual functional decline because of insufficient maintenance and
repair mechanisms, leading to stochastic damage accumulation with
aging’. Progress on aging clocks has revived the idea of a potential
aging program®, questioning whether aging is primarily a stochastic
entropy-driven event, whether aging clocks could show a causal rela-
tionship®'® and whether itinvolves programmatic aspects” . Intrinsic
flaws in a software code of life”, an adaptive pathogen control pro-
gram™'® or developmental processes™" were suggested to cause aging.
Age-dependentselective mortality may depend not only on remaining
fertility, but also on intergenerational resource transfer, explaining a

quantity—-quality tradeoff, and potentially allowing a programmed
process to affect aging®.

Epigenetic drift, observed during aging, was assigned to imper-
fect maintenance of epigenetic marks®, reducing methylation differ-
ences between genomic regions that are defined during development
over time”. It has been proposed that age-coupled stochastic meth-
ylation changes are highly genome context specific?, and that an
information-theoretic view of DNA methylation pattern explains the
observed stochasticity in line with context-specific maintenance
energy consumption®. Differential equations showed that CpG meth-
ylationsites can be modeled based on maintenance rates, defining CpG
site-specific equilibria®**. Horvath'’s epigenetic clock was suggested
to result from an imperfect epigenetic maintenance system (EMS)*
andincreased DNA methylation entropy was observedin older indivi-
duals?. This stochastic epigenetic driftis conserved across species and
attenuated upon caloric restriction®®. Age-related variably methylated
positionsare reproducible, not driven by cell-type composition, linked
todevelopmentaland DNA damage response genes, enriched at poly-
comb repressed regions and associated with expression of polycomb
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repressive complex 2 (ref. 29). Moreover, ~30% of the mouse genome
might be affected by age-related epigenetic disorder, whichis enriched
in the Petkovich clock®, and a clock using these biological disorder
measurements could be built™.

To deepen the mechanistic understanding of epigenetic aging
clocks, CpG sites from 12 clocks were deconstructed into distinct
modules some of which might be driven by entropic alterations that
regress toamethylation state of 0.5, whereas most modules change sys-
tematically with time®2. Recently, it was demonstrated that initializing
CpGyvaluesateither 0% or100% could accurately predict the simulated
age in single-cell simulations, irrespective of stochastic, coregulated
or combined simulation. Starting every CpG site at 0% or 100%, they
could either remain unchanged or regress toward 0.5 (ref. 33), sug-
gesting that a single stochastic variable could track entropic aging™*.

Here, we show that datasets that contain accumulating stochastic
variation, and are normalized between O and 1, can be used to build an
age predictor suggesting that any set of biological measurements could
be used to build accurate aging clocks. The pace of predicted aging is
primarily set by the degree of stochastic variation, where increased
stochasticity accelerates, whereas reduced stochastic variation deceler-
ates the predicted age. Predictions of a transcriptomic aging clock for
Caenorhabditis elegans correlate significantly withthe amount of added
stochastic variation. The predictive results of a clock based onsimulated
transcriptomic datawith accumulating stochastic variation significantly
correlate with chronological age. Epigenetic aging clocks measure how
much stochastic variation has accumulated, and the predictive results
ofamodeltrained onsimulated datawith accumulating stochastic vari-
ation correlate significantly with the chronological age of human DNA
methylation samples. We validated and replicated our results on data
from the Mammalian Methylation Consortium™®, showing thatavariety
of mammalianspecies and interventions can be correctly predicted. We
establish that the accumulation of stochastic variation is enabling the
construction of pan-mammalian clocks, which are capable of detecting
biological age deceleration and acceleration®, and the rejuvenation tra-
jectoryover areprogramming time-course inhuman cells. Our analyses
suggest that aging clocks could be based on any biological parameter
with stochastic age-related alterations for precise measurements of
aging, without the need for a deterministic process.

Results

Data-type independent predictions

To investigate whether a stochastic process is sufficient to build an
age predictor from any dataset, we simulated random data with an
agerangebetween 0 and 100. We used 2,000 random data points (fea-
tures) uniformly distributed between O and1as the ground state. The
ground state is motivated by the proposed ground zero of organismal
aging’. Featuresin prediction models can be any quantifiable data type
normalized to values between 0 and 1. To test whether accumulating
normal-distributed stochastic variation over time enables the building
of an age predictor, we independently added such variation to all fea-
turesinthegroundstate1to100 times (Extended DataFig.1a and Meth-
ods). We simulated six sets of samples, applying stochastic variation
from1to100 times, reflecting a potential lifespan range. Note that the
range from1to 100 was chosen arbitrarily. Using 3 sets of 100 samples
we trained an elastic net regression that predicts the simulated age; that
is, the number of times stochastic variation was added. To validate the
model, we used the 300 independent validation samples, starting with
the same ground state but adding independent stochastic variation
from the same distribution (Extended Data Fig. 1b). Although the sto-
chastic variation application makes the datanoisier in each time-step
and appears to be countable, no predictor can be built because the
validation samples lack any trend in the data (Extended Data Fig. 1c;
Pearson correlation: —0.05). Stochastic variation contains negative
and positive values that are equally likely, thus on average canceling
outthevariation precludingatrend or prediction. When, however, we

used the above approach but constrained the values between 0 and 1
after adding the stochastic variation, we observed an almost perfect
prediction with a Pearson correlation for the independent validation
dataof0.99 (P<1x107", full statistics of all analyses can be found in the
Source Data) (Extended DataFig.1d). Thus, the model found a pattern
in the simulated data allowing the prediction of how often stochastic
variation was added to the ground state (simulated age) evenininde-
pendent validation data. Importantly, this will potentially work for any
dataset, because our simulated starting point (ground state) consists
of uniformly random databetween 0 and 1, and the stochastic variation
added ateach time-step is randomly chosen from anormal distribution;
thatis, it does not require any regulation or program.

To account for the non-normal distribution of values that are
boundedby 0 and1, we transformed the values before adding stochas-
tic variation using the logit transform and transformed the data back
viathe expit (inverse-logit) transformation (Fig. 1a). A predictor built on
these transformed datareplicates the modelin Extended DataFig.1d,
further establishing the validity of accumulating stochastic variation
in predicting age independent of whether a data transformation was
used or not (Fig. 1b; Pearson correlation: 0.95).

The prediction accuracy of the independent validation data was
robust to the distribution fromwhich stochastic variation was sampled
for the training and validation samples (Fig. 1c and Extended Data
Fig.1le). Thelogit-transformed datarequire aslightly higher datarange
from which the stochastic variation is sampled (Fig. 1c). Even predic-
tions in which the age-related stochastic variation per time-step was
smaller than the stochastic variation with which we varied the ground
state for each sample (N(u =0, 6> = 0.01%)), showed high accuracy; for
example, the model trained on stochastic variation sampled from
N(u =0, 0>=0.005) per time-step still had a median R? (coefficient
of determination) value of 0.79 for prediction of the independent
validation data (Extended DataFig.1e). Thisindicates that even a small
amount of accumulating stochastic variation per time-step isenough
for an accurate prediction.

During training, elastic net regression assigns a coefficient to
each of the 2,000 features that can then be used to predict novel
independent samples. The elastic net regression coefficients for the
2,000 features in our simulation in Fig. 1b and Extended Data Fig. 1d
arereproduciblein betweenindependent runs with the same ground
state (Fig. 1d and Extended Data Fig. 1f), indicating that even random
stochastic variation patterns allow for robust predictions. Prediction
ispossible because of aregressionto the mean, whichistobe expected
fromastochastic process with adatarange limit (Fig. 1e and Extended
Data Fig. 1g). Features starting close to O tend to increase after sto-
chastic variationaddition resulting in a positive elastic net coefficient,
whereas features close to 1tend to decrease resulting in a negative
coefficient. Features starting around 0.5in the ground state are more
sensitive to noise because the added stochastic variation is equally
likely to movein either direction leading, on average, to a cancelation
of noise (Fig. le and Extended Data Fig. 1g).

The prediction accuracy of the amount of normal-distributed
stochastic variation plateaus after 2,000 features at an R? value of
around 0.97, showing that even models with a limited number of fea-
tures are highly accurate (Fig. 1f and Extended Data Fig. 1h). Of note,
elastic net regression shrinks the coefficients of some features to 0 and
thereby further reduces the number of features. These results show that
reproducible predictions are possible with fewer than 2,000 features
(much fewer than are usually available in biological datasets involving
any omics approaches), as long as there is accumulating stochastic
variationand the datacanbe normalized between 0 and 1 (thatis, pre-
dictions are not limited to DNA methylation or transcriptomic data).

We next wondered how a model trained on stochastic variation
sampled from N(u = 0, 6> = 0.2%) would predict samples with different
stochastic variation distributions. Choosing a standard deviation
that is twice as large (o= 0.4) also doubles the interval from which
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Fig.1|Normal-distributed stochastic variation accumulation simulations
enable aging clock construction for simulated data. a, Sample generation
explanation with logit transform. b, Accumulating stochastic variationin
logit-transformed data enables accurate simulated age predictions. The

X axis shows the number of times stochastic variation was added to the ground
state and the y axis shows the prediction of the independent validation data
(n=300). c, Predictions of the independent validation data are robust to the
stochastic variation distribution. The x axis shows the standard deviation of the
normal distribution from which the stochastic variation was sampled and the
yaxis shows the R?value of the independent validation data predictions (N=3
independent repeats; each with n =300 independent samples). d, Coefficients of
independent models are highly correlated if trained on samples starting from the
same ground. Shown are the coefficients of N=2,000 features. e, The prediction
inbis possible because of a regression to the mean. The x axis shows the starting

values of the 2,000 features of the simulated ground state and the y axis shows
the elastic net regression coefficients for the modelin b (trained onn=300).

f, The accuracy of predictions plateaus after ~2,000 features in the ground state.
The x axis shows how many features were randomly sampled for the ground

state and the y axis shows R*as a measure of model accuracy (V=10 independent
repeats for features sizes <1,000, N =3 independent repeats otherwise; each with
n=300,3independent samples per time point). g, The amount of stochastic
variation sets the pace of aging. The elastic net regression model was trained with
stochastic variation sampled from N(u = 0, > = 0.2?) and tested on independent
samples generated from the same ground state, but with varying degrees of
stochastic variation (color-coded, as indicated in the panel). All simulated
datasets consist of n =300 independent samples. Boxplots in c and fare shown
with the center line depicting the median, the box limits denote the bottom and
top quartiles, and the whiskers indicate the 1.5x interquartile range.

~99.7% of stochastic variation values are sampled, whichincreases the
amount of stochastic variation added in each time-step. Testing the
model on datasimulated with more stochastic variation per time-step
resulted in a faster increase and plateau in the prediction, whereas a
reduced stochastic variation level decreased the slope of the predic-
tion (Fig. 1g and Extended Data Fig. 1i). Samples with more stochastic
variation per time-step reach their maximumsimulated age earlier. This
analysis suggests that anincrease in stochastic variation accelerates,
whereas a decrease in stochastic variation decelerates the predicted
aging process.

Transcriptomic biological age prediction

We next wondered whether an age predictor based on gene expres-
sion data applied to data with accumulation of stochastic varia-
tion would show a comparable correlation result. We have recently

developed a highly accurate biological age predictor of C. elegans
with the binarized transcriptome aging (BiT age) clock®. We defined
the ground state as the biologically youngest adult RNA sequencing
(RNA-seq) sample (GSM2916344)* in our dataset and simulated sto-
chastic variation similarly as explained in Extended Data Fig. 1a; that
is, with (not empirically-estimated) normal-distributed variation. In
accordance with ourresultsin Fig.1b and Extended DataFig.1d, BiT
age predictionsalso correlate linearly with the amount of stochastic
variationinthe data (Fig. 2a; Pearson correlation: 0.81). The correla-
tion is robust to the amount of stochastic variation added in each
time-step with a peak in Pearson correlation of 0.81 at stochastic
variation sampled from anormal distribution with astandard devia-
tion of 0.01 (Extended Data Fig. 2a). This indicates that the predicted
transcriptomic age of C. elegans correlates with age-dependent sto-
chastic variation in the data.
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Fig.2|Normal-distributed stochastic variation accumulation simulations
enable aging clock construction for transcriptomic data. a, Simulated age
and BiT age” predictions correlate significantly (Pearson correlation: 0.81,
P=5.99 x10™*, two-sided test); n =160, 10 independent samples per time point.
Variation was sampled withas.d. of 0.01. b, Predictions of a transcriptomic
stochastic data-based clock correlate significantly (Pearson correlation: 0.72,
P=5.7x10"°, two-sided test) with the biological age of n = 993 independent
RNA-seq from 61 independent public datasets (Supplementary Table1).c, There
isasignificant association between the median lifespan and the predicted age
of the clock used in b (median lifespan coefficient P= 0.015). Regression model

fit with a 95% confidence interval (shadowed area) shown for long-lived (median
lifespan >20 days, blue), short-lived (median lifespan <8 days, green) and normal-
lived (orange) samples. d, Mianserin shows a dose-dependent decrease in the
predicted age of the clock used inb. ANOVA (P=0.006) with a two-sided Tukey’s
post hoc test was used (50 M mianserin versus control adjusted P= 0.026).
Boxplots are as described in Fig. 1. e, Mianserin (50 pM) shows a lower predicted
age over the whole time-course (two-way ANOVA treatment P=7.3 x107).

Full statistics are available in the Source Data. The regression model fit witha

95% confidence interval (shadowed area) is shown for worms receiving 50 M
mianserin (orange) and control worms (blue).

Next, we wondered whether a stochastic data-based clock could
predict the biological age of biological samples. Stochastic data-based
clock predictions were significantly correlated (Pearson correlation:
0.72) with the biological age of 993 independent C. elegans RNA-seq
samples from 61 independent public datasets for which the biological
age could be calculated (Fig. 2b, Supplementary Table1and Methods).
This predictionis robust to the number of features (genes) usedinthe
simulation (Extended Data Fig. 2b). A permutation of the biological
age does not correlate with the predicted simulated age (Extended
DataFig. 2c).

Totest whether astochastic age predictor could identify age accel-
erationand decelerationacross awide spectrumof aginginterventions,
wedivided the 993 transcriptome samples into long-lived (median lifes-
pan >20 days), normal-lived and short-lived (median lifespan <8 days).
Plotting the predictions against the chronological age shows small
but significant differences. A multivariate linear regression with the
chronological age, the median lifespan anditsinteraction term shows
asignificant median lifespan effect with anegative coefficient; thatis,
alonger lifespan leads to a lower prediction based on the stochastic
data-based clock (P=0.015) (Fig. 2c). This indicates that accumulat-
ing stochastic variation scales mostly with chronological age, but
also shows a significant lifespan effect (biological age prediction).
A lifespan-extending treatment that was shown to reduce transcrip-
tional drift (ameasure of transcriptomic variance) is the anticonvulsant
mianserin®. Consistent with reducing age-associated variationin gene
expression, we found that mianserin dose-dependently decreases the
predicted age with the stochastic data-based clock in independent
data (Fig. 2d; one-way analysis of variance (ANOVA), P=0.006; post
hoc Tukey test 50 uM mianserin versus control, P=0.03). Mianserin
(50 uM) shows a (nonsignificant) lower slope as well as generally lower

predicted values over a time-course (P=7.3 x107*) compared with
control samples (Fig. 2e). These results indicate that the stochastic
transcriptomic data-based clock predictions of C. elegans can predict
the chronological age and the biological age deceleration of apharma-
cological intervention affecting transcription drift.

Single-cell DNA methylation simulations

The most well-established aging clocks in mammals, including humans,
arebased onage-related changesin epigenetic CpG sites. We assessed
whether simulations based on accumulating stochastic variation might
beapplicableto epigenetic data. Adding normally distributed stochas-
ticvariation onceinthe simulationin Fig.1did not change the simulated
sample much from the ground state (Extended Data Fig. 3a), whereas
adding stochastic variation 100 times led to a uniform distribution of
features (Extended Data Fig. 3b). However, CpG methylation sites are
typically under higher maintenance and are less noisy. Comparing
biological DNA methylation data of young and old subjects shows that
the methylation sites starting close to the extremes (0 or 1) indeed show
less variance (Extended Data Fig. 3c).

Instead of bulk databetween 0 and 1, we next simulated ‘single-cell’
dataforwhich eachfeatureisbinary, either methylated (1) orunmeth-
ylated (0) (Fig. 3a). Note that this is a simplification for diploid organ-
isms; however, this should not affect the results because in theory
the different alleles could be represented as different features in the
simulations. It has been shown that a bulk methylation pattern at sin-
gle CpG ssites can be modeled using differential equations containing
a methylation maintenance efficiency (E,,; the probability that a
methylated site stays methylated) and a de novo methylation effi-
ciency (Eg; the probability that an unmethylated site gets methylated;
1- E,is the maintenance efficiency of the unmethylated state (E,))*.
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Fig.3|Single-cell DNA methylation stochastic variation accumulation
simulations enable aging clock construction for simulated data.

a, Explanation of single-cell simulations. b, The accuracy of the model is
dependent on the methylation maintenance efficiency rate. A stochastic data-
based clock was trained with 500 features and universal maintenance efficiencies
E.,and Eg, and was used to predict the simulated age of 300 independent
validation samples. N = 3 independent experiments with different ground states
are shown for each maintenance efficiency. ¢, Single-cell simulation of DNA
methylation sites with £,,and £, values of 99.9% allows us to build a clock with
highly accurate predictions (R*=0.999) of independent validation data (n = 300).
d, Theaccuracy of predictions with a universal maintenance efficiency rate of

Simulated age

Simulated age

99.9% plateaus after -32 features with an R*value of 0.99. N =10 independent
repeats for features sizes <1,000, N =3 independent repeats otherwise; each with
n=300,3samples per time point. Boxplotsinband d are asdescribed in Fig.1.e,
The maintenance efficiency rate sets the pace of aging. The stochastic data-based
clock was trained with a maintenance efficiency of £, = £, = 99.9%, and tested on
independent samples generated from the same ground state, but with varying
maintenance efficiencies (color-coded, as indicated in the panel). All simulated
datasets consist of n =300 independent samples. f, Biologically estimated
maintenance rates allow for highly accurate predictions. Site-specific £, and £,
values were estimated from the data (Methods). The simulations were the same
as in ¢ but with site-specific maintenance rates (n = 300).

These maintenance efficiencies describe the rate by which a CpG site
doesnotalter per time-step. We simulated single-cell DNA methylation
changesinastochastic systemover time, as depicted in Fig.3a, usinga
variety of maintenance efficiencies (site-specific efficiencies that are
either estimated from data, randomly chosen or universal efficiencies
that are fixed to one value for all CpG sites).

First, we tested how a universal maintenance efficiency rate (the
samerate for all 500 features) would affect the accuracy of the model
(Fig.3b). Ahigh maintenance (E,, = 99.9%, E4 = 0.01%; that is, £, = 99.9%)
yielded almost perfect simulated age predictions (R*=0.999) on the
independent validation data (Fig. 3b,c). A simulated age of 100 shows
minimal deviation from the ground state, demonstrating high accu-
racy withsmall effect sizes (Extended Data Fig. 3d). Even maintenance
rates of up t0 99.995% resulted in a prediction with an R? value of 0.78
(Fig.3b). The predictoris robustin the number of features allowing for
highly accurate age predictions with small feature sizes, whose accu-
racy plateaus after around 32 features (Fig. 3d). Training the model on
E.,=99.9% and testing it on data simulated with lower and respectively
higher values of £, showed that less maintenance accelerates, whereas
higher maintenance decelerates the aging clock (Fig. 3e). These results

indicate that evena high maintenance rate yields accurate age predic-
tions, and that an increase in maintenance decelerates, whereas a
decrease in maintenance accelerates the predicted age.

A maintenance rate of 99.9% for methylated as well as unmethyl-
ated sites leads to a regression to the equilibrium (0.5). Starting the
simulation at equilibrium and at £, = 99.9% did not allow for a predic-
tion of the simulated age, because no regression to the equilibrium
state is possible (Extended Data Fig. 3e; Pearson correlation: 0.05).
However, aslight deviation to 0.51for all starting values in the ground
stateled toanaccurate simulated age prediction viaaregressionto the
equilibrium state (Extended Data Fig. 3f; Pearson correlation: 0.95).

Similar to the universal maintenance model (Fig. 3b-d), accurate
simulated age predictions are possibleif £, and E are empirically esti-
mated from data (Methods and Fig. 3f; Pearson correlation: 0.81). The
predictions plateau earlier thanin Fig. 3¢ because of lower maintenance
rates, leading to a quicker convergence to the site-specific equilibria
(Extended DataFig. 3e).

Site-specific E,, and E, values allow accurate simulated age pre-
diction even when starting at 0.5 (Extended Data Fig. 3g; Pearson cor-
relation: 0.99). Such a site-specific regression away from the mean is
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still in line with stochasticity and entropic alterations. Although the
site-specific maintenancerates give aframeworkin which each feature
will change, the changeitselfiis purely stochastic. Stochastic variation
after 100 time-steps shows less variation in features starting close to
0 or 1thanin features starting close to 0.5 (Extended Data Fig. 3h),
resembling the comparison of young and old human DNA methyla-
tion datasets (Extended Data Fig. 3¢c). Without site-specific stochastic
variation predictions were driven by the regression to the mean (Fig.1e
and Extended Data Fig. 1g), whereas site-specific stochastic variation
showed no correlation (Extended Data Fig. 3i), suggesting aregression
away from the mean could be explained via a stochastic process, argu-
ing against arecent report that suggested clock sites starting around
0.5 could not be entropic®.

In conclusion, accurate age predictors can be built by simulating
DNA methylation changes purely with stochastic variation based on
the maintenance efficiency rates of methylated and unmethylated
sites. In addition, DNA methylation sites can have equilibria unequal
to 0.5, allowing for a stochastic regression away from the mean, and
even sites close to the site-specific equilibria can confer information
for the aging clock.

Public aging clocks
Next, we wondered whether published DNA methylation aging clocks
might also mainly measure stochastic variation. Horvath’s pan-tissue
DNA methylation clock® predicts a linear increase in the amount of
stochastic variation generated based on empirically estimated £, and £,
values until it plateaus at a predicted age of around ~60 years (Extended
DataFig. 4a; Pearson correlation: 0.91). The time-steps in our simula-
tions arearbitrary and not directly comparable with the predicted age,
because our simulated age tracks how often we added stochastic varia-
tion, and the predicted age is the epigenetic age in years. We wondered
whether we could estimate the range limits of the site-specific £,,and E,
suchthatthe epigenetic age prediction of our simulated datawould be
asaccurateas possible regarding the simulated age. We tested multiple
combinations of limits for E,, and £, and calculated R* as a measure of
accuracy between the predicted and simulated ages (Fig. 4a). Horvath’s
epigenetic clock has the highest accuracy in predicting the simulated
agewiththelimits 97% < E,, <100% and 0% < E, < 5%, suggesting higher
site-specific maintenance with a narrower range for £, and £, than
previously assumed (Fig. 4a). Indeed, the prediction with Horvath’s
epigenetic clock plateaus later with these new limits (Fig. 4b; Pearson
correlation: 0.91, compare Extended Data Fig. 4a). These results sug-
gest that the site-specific maintenance rates are sufficient to explain
the predictability of Horvath’s aging clock.

Randomly choosing E,,and £, within the limits 97% < £, <100% and
0% < E; < 5% allowed simulations with highly significant Pearson corre-
lations also (median Pearson correlation: 0.89; Extended Data Fig. 4b).
Thesameis even trueif, instead of site-specific maintenance rates, all
CpG sites were simulated with a universal maintenance efficiency of
99% that was notinferred from a biological sample and could therefore
not be confounded (Fig. 4c; Pearson correlation: 0.97). The Pearson
correlations are robust to the universal methylation maintenance
efficiency, but peak at 99% (Extended Data Fig. 4c). Alow maintenance
efficiency of 90% reduces the Pearson correlation (Extended Data
Fig. 4c) because the features reach equilibrium faster and therefore
plateau more quickly (compare with Fig. 3b). A high maintenance
efficiency of 99.95% reduces the Pearson correlation because of the
reduced speed of convergence (Extended Data Fig. 4c). Notably, Hor-
vath’s clock predicts an old age of 69.4 years for a dataset with DNA
methylation levels of 0.5 for all CpG sites. These results suggest that no
biologically inferred maintenance rateis required butinstead indicates
that stochastic variation is sufficient for age prediction.

Next, we tested the second-generation aging clock PhenoAge*°
(Fig.4d-fand Extended Data Fig. 4d-f). The previously assumed limits
for E,,and E led to asimilar linear increase, and early plateauing of the

predicted PhenoAge (Extended DataFig.4d; Pearson correlation: 0.89).
Improved limits (Fig. 4d,e), coincide with those estimated for Horvath’s
clock. PhenoAge significantly correlates with the simulated age of sam-
ples simulated with random £, and Eywithin the limits (Extended Data
Fig.4e; median Pearson correlation: 0.84), or auniversal maintenance
efficiency of 99% (Fig. 4f; Pearson correlation: 0.94), which also was
robust to the maintenance efficiency chosen (Extended Data Fig. 4f).

We next tested how ground states defined at different ages might
affect the age simulations. Starting the ground state with asample from
alé-year-old and simulating the addition of up to 100 stochastic varia-
tionsresultsinalinearincreasein predicted age (Extended DataFig. 4g;
Pearson correlation: 0.89). Starting froma 37-year-old, begins the pre-
diction higher, shows asmaller linearincrease inthe predicted age and
leadstoaquickerarrivaland longer time at the plateau (Extended Data
Fig.4h). Starting from an 81-year-old does not show a differencein the
prediction uponstochastic variation, indicating that the ground state
already contains as much stochastic variation as we would expect at the
plateau (Extended DataFig. 4i; Pearson correlation: 0.09). These results
affirmthat our simulations are robust to the choice of the ground state
and that the predictions are scaled accordingly.

All tested first-generation aging clocks*™* and the
second-generation aging clock GrimAge** were significantly correlated
with the simulated ageirrespective of whether empirically estimated,
randomor universal maintenancerates were assumed (Extended Data
Fig.5a-h).

Using the Gillespie algorithm* for event-based simulations, in
which time-steps are not uniform but the time until the next event is
calculated, recapitulates our results (Extended Data Fig. 5i; Pearson
correlation: 0.98), indicating that our simulations are robust to the
method used.

Stochastic data-based aging clock

We next aimed to address whether a clock built on simulated DNA
methylation data (Methods) could predict the chronological age of
mammalian biological samples. A simulated training dataset with the
CpGsitesfromHorvath’s epigenetic clock led to asignificant Pearson
correlation of 0.87 (P <1x107') for chronological age and the pre-
dicted simulated age (Extended Data Fig. 6a). This linear correlation
holds for randomly chosen CpG sites and is robust across different
feature sizes (Extended Data Fig. 6b), whereas randomly permuting
the chronological age of samples leads to nonsignificant correlations
(Extended DataFig. 6c¢).

To exclude any potentially confounding effects of cell-type hetero-
geneity*®, we estimated cell-type composition to subsequently correct
thebiological samples to obtain cell-type heterogeneity-adjusted CpG
beta values. Using cell-type corrected data did not affect the perfor-
mance of the stochastic data-based clock (Fig. 5a; Pearson correlation
0.87, P<1x107%), and an additional cell-type correction of the simu-
lated samples still showed a Pearson correlation of 0.81 (P<1x107)
indicating highly correlated predictions of the biological samples
(Extended Data Fig. 6d). In addition, we used a multivariate linear
regression of the form:

Age ~ PredictedAge + CellTypeFractions.

Thismultivariate linear regression approach also showed a signifi-
cant predicted age variable (P<1x 107, Source Data) for the predic-
tions of the stochastic data-based clock. These results indicate that
cell-type heterogeneity does not have a major role in the predictive
power of stochastic variation accumulation.

We further probed for potential confounding effects by expanding
the analysis to 11,146 independent whole blood or peripheral blood
leukocyte samples from 15 different datasets. Stochastic data-based
prediction of those samples still resulted in a Pearson correlation of
0.57 (P<1x107) (Extended Data Fig. 6€).
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Fig. 4 | Epigenetic aging clock predictions correlate significantly with the
amount of stochastic variation. a, The methylation maintenance efficiency
limits affect the simulation and subsequent prediction with Horvath'’s epigenetic
clock®. The R? value was calculated between the predicted epigenetic age by
Horvath’s epigenetic clock? and the simulated age. N = 3 independent repeats,
each consisting of n =73 independent samples. b, Horvath’s epigenetic age
prediction® of samples simulated based on biologically estimated maintenance
rates with the limits £, > 97% and £, < 5%, correlates significantly with the
simulated age. N =73 independent samples. ¢, Horvath’s epigenetic age
prediction® of samples simulated based on a universal maintenance efficiency
rate of 99% for all features, correlates significantly with the simulated age.

(universal maintenance efficiency)

N=73independent samples. d, Methylation maintenance efficiency limits
affect the simulation and subsequent prediction with PhenoAge*’. The R*value
was calculated between the predicted epigenetic age by PhenoAge*° and the
simulated age. N =3 independent repeats, each consisting of n = 73 independent
samples. Boxplotsinaandd are asdescribed in Fig. 1. e, Biological age prediction
with PhenoAge*® of samples simulated based on biologically estimated
maintenance rates with the limits £, > 97% and E, < 5%, correlates significantly
with the simulated age. N = 73 independent samples. f, Biological age prediction
with PhenoAge*® of samples simulated based on a universal maintenance rate

of 99% for all features, correlates significantly with the simulated age. N=73
independent samples.

Wheninstead of an adolescent ground state, we initiated the sto-
chastic data-based clock with a fetal sample the Pearson correlation
improved to 0.72 (Fig. 5b), with 9 of 15 datasets reaching correlations
>0.8 (Extended Data Fig. 7). By comparison, Horvath'’s original clock
predicts the same samples with a Pearson correlation of 0.85,and 10 of
15 datasets with a correlation >0.8 (Extended Data Fig. 8).

In conclusion, our analysis shows that simulating epigenetic
stochastic data starting from one young biological sample with
site-specific maintenance rates, allows significantly correlated pre-
dictions with the chronological age of independent biological samples.

Biological age prediction

Recently, apan-mammalian clock suggested that instead of stochastic
damage accumulation, aging might be a consequence of a develop-
mental process because the clock sites were associated with genes
implicated in developmental gene regulation®. To assess whether
stochastic variation accumulation might also allow a prediction of
the biological age, we next investigated the predictive power of a sto-
chastic data-based clock on the data from the Mammalian Methylation
Consortium®™>>¥,

We used four stochastic clocks starting from the youngest blood
sample from Tursiops truncatus with different maintenance rates
(Methods). All four clocks are on average highly significantly corre-
lated with independent data, even from different species (Fig. 5c and
Extended DataFig. 9a), demonstrating that even one biological sample
alone withsimulated stochastic variationaccumulationis sufficient to

build aging clocks that are strongly correlated with the relative age of
avariety of mammalian species.

Lu et al. further validated their clock on interventions that are
known to slow biological age”. Applying our stochastic data-based
clocks (clocks 1-4) on independent intervention data predicts sig-
nificant age deceleration for growth hormone receptor knockout
(GHRKO), mutant Tet3 or calorie-restricted (CR) mice after multiple
test correction (Fig. 5d and Extended Data Fig. 9b-d). Each inter-
vention group showed, on average, strong effect sizes for all four
clocks (see Source Data for full statistics). GHRKO liver samples have
a Cohen’s d of 1.96 for clock 1 (Extended Data Fig. 9b), Tet3 mutant
cerebral cortex samples have a Cohen’s d of 3.7 for clock 1 (Extended
Data Fig. 9¢) and CR liver samples have a Cohen’s d of 1.65 (Extended
Data Fig. 9d). In a dataset of human smokers, previous smokers and
never smokers our stochastic clocks predict asignificant age accelera-
tion trajectory in the smokers over the study course as calculated by
amultivariate regression analysis (Fig. 5d and Extended Data Fig. 9e).
We further validated our four clocks on an independent dataset on
parabiosis in young and old mice*. Amultivariate regression analysis
showed that the predictions of clocks 1-4 are all highly significantly
correlated with the chronological age (Fig. 5e (P=7.8 x107%) and
Extended Data Fig. 9f-h (P=6.1x10",5.6 x10"°and 1.3 x 10 ®respec-
tively). Clocks 1 and 2 additionally showed a significant interaction
term, indicating that heterochronic parabiosis in old mice leads to a
younger predicted age compared with isochronic parabiosis, whereas
there is no difference in young mice. These results further validate
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Fig. 5|Single-cell DNA methylation stochastic variation accumulation
simulations enable aging clock construction for pan-mammalian
chronological and biological age predictions. a, The predictions of a stochastic
data-based clock correlate significantly (Pearson correlation: 0.87, P <1x 107,
two-sided test) with the chronological age of the cell-type corrected independent
healthy biological validation samples (GSE41037, n = 392)"%. b, Validation of

the stochastic data-based clock starting from a fetal sample (GSM4682890) on
11,146 independent samples from 15 independent datasets (GSE84727, GSE87571,
GSE80417, GSE40279, GSE87648, GSE42861, GSE50660, GSE106648, GSE179325,
GSE210254, GSE210255, GSE72680, GSE147740, GSE55763, GSE117860) shows a
significant correlation (Pearson correlation: 0.72, P <1x 107, two-sided test).

¢, Circle plot showing the Pearson correlation between the relative age of blood
samples of the corresponding species and the predictions of clock1asagreen
line around the circle. Species are shown for which at least five blood samples
were available in the dataset GSE223748. The colors within the circle show
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the taxonomic order of the corresponding species, as listed on the left-hand
side. d, Validation of Clocks 1-4 on interventions with known lifespan effects
inmouse and humans. Age-matched GHRKO mice with 30 normal (12 liver, 12
kidney, 6 cerebral cortex) and 29 GHRKO (11liver, 12 kidney, 6 cerebral cortex)
samples”; Tet3-knockout mice with 28 normal (14 striatum, 14 cerebral cortex)
and 16 Tet3 (8 striatum, 8 cerebral cortex) samples”; 36 CR mice with 59 normal
mice'; and the effect of smoking on human aging”'. The color gradient for mice
isbased on the sign of the t-test, the color of the human data is based on the
interaction coefficient. The annotated values show the adjusted false discovery
rate. e, Independent validation of clock 1 on parabiosis in young and old mice
(GSE224361). Liver samples of mice that received either isochronic (orange) or
heterochronic (blue) parabiosis are shown. A multivariate regression shows a
significant age variable (P <1x107) and interaction variable (P=1.22 x107%).
Full statistics are given in the Source Data. The regression model fit with a 95%
confidence interval (shadowed area) is shown.
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the chronological age prediction in independent datasets and cor-
roborate that biological age is robustly predictable with accumulating
stochastic variation.

To assess the effect of the ground state on predictions we built
clocks for 12 different species orders, resulting on average in highly
significantly correlations with values ranging from 0.6 for clock 1
starting fromaMonotrematasampleto 0.85for clock1startingfroma
Artiodactylasample (Fig. 6aand Extended DataFig.10a,b). Clocks 2-4
show similar results (Extended Data Fig.10c-e). A clock built fromthe
ground state of one order does not improve the prediction accuracy
of species within the same order on average (Fig. 6a).

To assess whether ‘age-reversal’ could be measured by astochastic
data-based clock, we applied it to an independent reprogramming
time-course of human dermal fibroblasts*. Despite differences in
species, tissue-type and platform, a rejuvenation trajectory became
evident, with adecreasing predicted age starting from 11 days of inter-
mediate reprogramming and reaching the final lowest predicted age
at 28 days (Fig. 6b; one-way ANOVA, P= 8.4 x10™°). These results show
that the stochastic data-based clock could identify study/tissue- and
platform-independent signatures of age and captures biological aging
asshown by the gradual decrease in the predicted age over the repro-
gramming time-course, as well as correctly predicted biological age
differences ininterventions.

Discussion

Duringagingarange of biomolecular parameters showincreased ‘noise’
such as stochastic DNA methylation drifts, degrading transcriptional
networks inmouse muscle stem cells*® and increased cell-to-cell gene
expression variation®. Transcriptomic variation can result fromintrin-
sic (biochemical fluctuations and transcriptional bursting)**and extrin-
sic noise such as stochastic DNA damage®’. Predominantly affecting
long genes*, transcription-blocking DNA lesions might explain the
age-associated systemic transcript-lengthimbalance®*°. The role of sto-
chasticityin transcription remains subject to debate as arecent study
reported a lack of evidence for increased transcriptional single-cell
noise in aged tissues”.

Stochastic changes occur during DNA methylation site copying or
maintenance, like DNA repair and subsequent DNMT1 recruitment’®,
or in DNA replication® because replication timing during S-phase
itself has been shown to affect methylation maintenance levels®®. The
information-theoretic view of the epigenome? suggests that higher
maintenance, and therefore lower information loss, consumes more
energy and is focused on more crucial regions of the genome.

The increased entropy with aging has been associated with
higher hemi-methylation?, is correlated with chronological age, and
longer-lived mice showed a lower entropy at age-related CpGs*®, which
are enriched in transcription factors and regulators of development
and growth®. The EMS theory®® postulates that age-related epigenetic
changes are the footprint of animperfect maintenance system, leading
toanincreaseinerrors over time. CpG maintenance in genomic regions
thatareimportant for development might become less relevant during
aging, leading to faster accumulation of stochastic variation. It was
suggested that only 10% of CpG sites are driven by biological stochas-
tic variation®. Our single-cell simulation results, by contrast, are in
line with a recent report showing that a majority of CpG sites change
stochastically® even though only ~500 CpG sites could be analyzed
because of the low coverage of single-cell data®*.

The most trivial model of astochastic process that can potentially
be used for age predictionis a process that starts ataground state of all
Os and hasacertain low probability of switching to 1. Such a system will
inevitably accrue changes (1s) over time. If the probability of switching
from O to 1is high enough for an accumulation over the time frame
of a lifespan, the sum of 1s can be used as the simplest predictor of
age. The accumulation of DNA mutations could be seen as one exam-
ple of this simplest case. Similarly, simulated stochastic changes in

single-cell DNA methylation using anexponential decay approach start-
ing with either 0 or 1 for all sites before applying stochastic changes,
allowed for accurate predictions of the simulated age, in line with the
regression-to-the-mean model, because each site starts at the extreme
and canonly diverge fromit®,

In contrast to a multiplicative model, which shows a gradual slow-
down of methylation change over time*, we modeled the stochastic
variation accumulation in an additive manner, without adependency
of the random variation on the state of the system. We show that sto-
chastic data-based clocks also predict chronological age and lifespan
effects in transcriptome data of C. elegans and could measure the
age deceleration resulting from reduced transcription drift through
mianserin treatment’,

First-generation as well as second-generation DNA methylation
aging clocks significantly correlate with the amount of stochastic
variation in the data, suggesting that chronological and biological
aging clocks are measuring stochastic variation. The prediction of all
tested clocks plateaus after a certain amount of stochastic variation,
possibly indicating an approach to site-specific equilibria. Cell-type
composition was shown to change with age and to affect clock predic-
tions®>*°, Although thisis animportant aspect for the interpretation of
clocks and the analysis of differentially methylated regions, correcting
for cell-type composition did not change our results, and our DNA
methylation simulations incorporating fixed or random maintenance
rates cannot be confounded by acomposition change over age. Inline
with this, age-related variably methylated positions are suggested
to be not driven by variations in cell-type composition®*®’. Publicly
available clock predictions significantly correlate with the simulated
age even if the same constant maintenance rate for all CpGs, or even
random maintenance rates, are used. A cell-type corrected stochas-
tic data-based clock maintains accurate predictions of independent
cell-type corrected biological samples, underscoring that cell-type
compositionisnot critical for the predictive power of stochastic vari-
ationaccumulation. Although estimating £,,and £, valuesis imperfect
and likely cell-type dependent, our stochastic simulations are robust
regardless of whether maintenance rates are estimated, randomly
chosen or fixed at a universal value.

We replicated our results on data from the Mammalian Methyla-
tion Consortium™®. Contrary to previous proposals that age-related CpG
sites were not stochastic marks accrued with age™ ™", our results show
that astochastic process and a single biological sample as the ground
state are sufficient to: (1) build predictors significantly correlated with
therelative age in various mammalian species; and (2) predict the age
accelerating or decelerating effects of interventions such as GHRKO,
calorie restriction or smoking.

Reprogramming via expression of the four transcription factors
Oct4 (also known as Pou5f1) Sox2, KIf4 and Myc (OSKM) has been sug-
gested toreverse cellular aging by resetting the DNA methylation land-
scape viade-differentiation®®. Predictions with a stochastic data-based
clock of a reprogramming time-course indeed follow the expected
rejuvenation trajectory. Our work suggests that interventions (poten-
tially evenrejuvenation) could reduce and perhaps reverse stochastic
variation.

Thataging clocks strongly correlate with the amount of stochastic
variation cautions the identification of causal effects. CpG sites that
show faster stochastic variation accumulation are likely less efficiently
maintained and lessimportant for cell survival or homeostasis, making
aging clock CpGsites unsuitable for the development of novel geropro-
tectors™. Indeed, many chronological aging clocks can be built from
DNA methylation dataand clock CpG sites might have limited value for
understanding biology or anti-aging interventions®.

Stochastic data-based aging clocks demonstrate the compatibility
of precise measures of the pace of aging with entropy-driven stochas-
tic variations in biological processes such as age-associated damage
accumulation. These results emphasize that a precise measure of aging
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Fig. 6 | Single-cell DNA methylation stochastic variation accumulation
simulations enable predictions for various species and reprogramming.

a, Heatmap showing median Pearson correlations of species in the same
taxonomic order between the predicted age of clock 1trained on the youngest
blood sample from species of the corresponding taxonomic order in the columns
(Artiodactyla: Tursiops truncatus; Carnivora: Odobenus rosmarus divergens;
Lagomorpha: Oryctolagus cuniculus; Monotremata: Tachyglossus aculeatus;
Perissodactyla: Equus caballus; Pilosa: Choloepus hoffmanni; Proboscidea:
Loxodonta africana; Rodentia: Marmota flaviventris; Sirenia: Trichechus
manatus; Suidae: Sus scrofa; Tubulidentata: Orycteropus afer) and the relative age
for all species in the rows. Values are shown for tissues and species for which at
least five samples were available. b, The stochastic data-based clock in Fig. 5c was
used on anindependent reprogramming time-course dataset of human dermal
fibroblasts (GSE54848)*’. One-way ANOVA, P=8.36 x 10° (statistics are shown
inthe Source Data). The line plot shows the mean values with a 95% confidence
interval (shadowed area).

pace does not require a programmed process, but is consistent witha
stochastic nature of the molecular alterations. Although we show that
accumulation of stochastic variationis sufficient to build aging clocks,
the limitation of our study is that a deterministic aging trajectory could
also be measured by a programmed clock. Thus, our results do not
completely rule out the existence of deterministic processes. Incertain
species, deterministic processes regulate the aging process, asseenin
variationin the monarch butterfly aging rate with migration routes’.
Maintenance and repair mechanisms were selected during evolution
for early, but not indefinite somatic maintenance, for instance the
limitation of somatic DNA repair capacities by the DREAM complex
in C. elegans™. Somatic proteostasis declines rapidly in nematodes
becasue the heat shock response is repressed during reproduction
onset via programmed jmjd-3.1 reduction, which can be alleviated by
removing the germline, consistent with the disposable soma theory’.

The genetically programmed limitations of such maintenance and
repair capacities could then result in age-dependent accumulation of
stochastic damage.

Stochastic errors might start accumulating from conception, in
line with the suggestion that aging starts from mid-embryonic develop-
ment”’, This might startavicious spiral, because every additional error
could disturb theintricate regulatory networks, including maintenance
systems, thus allowing for more errors to be made”™. It will be interest-
ingto explorein how far atightening of regulatory mechanisms could
slow the aging process, consistent with EMS theory®.

We propose that in addition to methylation clocks, any set of
biological measures, whether molecular or physiological, could in
principle be used for building aging clocks, as long as the data have
arange limit and experience accumulating stochastic variation. The
sufficiency of stochasticity for building aging clocks unifies the exact
determination of age and the reduced maintenance of homeostatic
processes driving the aging process. Our analysis predicts that the
level of such stochasticity sets the pace of aging. Reinstating regulatory
tightness could therefore provide opportunities for aging decelerat-
ing therapies.

Methods

Bulk simulations

Aground state was generated with 2,000 (unless indicated otherwise)
random features between 0 and 1. Fromthis ground state 6 independent
setsof100 samples each (one sample per age from1to100) were gener-
ated. Each of these 600 samples started from the same ground state
with slight deviations; thatis, each sample started with stochastic vari-
ation generated from N(u = 0, 0> = 0.01%) added to the ground state to
simulate biological variation. To model age-dependent stochastic vari-
ationaccumulation, random noise was generated from anormal distri-
bution N (i = 0,0?) withrandom.randn() from Numpy v.1.18.5 (ref. 75).
The standard deviation ¢ used for generation of stochastic variation
thatis applied at each time-step isindicated in the figure legends. The
simulated age of each sample defined how often stochastic variation
generated from N (u = 0,0?) was independently added to the ground
state. For example, for asample with simulated age 2, stochastic varia-
tion would be added twice to the ground state. Stochastic variation
addition was performed independently of all other samples, that is
ground state +2x stochastic variation independently sampled from the
normal distribution. Asample with simulated age 10 isacquired by tak-
ing the ground state and adding independently sampled,
normal-distributed stochastic variation 10 times (Extended Data Fig. 1a).
After stochastic variation addition values were kept between O and 1,
by setting values larger than1to1and values smaller than O to O (except
fortheresultsin Extended DataFig.1c, where no limits where applied).
Totrainapredictor of the simulated age we used 3 sets of 100 independ-
ent samples for training of an elastic net regression model using Elas-
ticNetCV from sklearn v.0.23.1 (ref. 76) with the following parameter:
11_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. The remaining 3 sets of
100 independent samples were used as a hold-out validation dataset.

Logit transform

Analysis undertaken with the logit transform was processed as fol-
lows. The ground state was first transformed with logit() from Scipy””.
Stochastic variation was generated and applied as described above
and added to the logit-transformed ground state. After stochastic
variation addition, values were transformed back with the inverse-logit
transform expit() from Scipy””.

Human single-cell simulations

The ground state of single-cell simulations consists of 2,000 (unless
indicated otherwise) randomly chosen CpG sites of the youngest
sample in GSE41037 (ref. 78) (GSM1007467). For the clock starting
from a fetal sample, a umbilical cord blood sample in GSE154915
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(GSM4682890) was chosen. Each of the features (CpG sites) isanumber
between 0% and 100% and is used to generate 1,000 cells with binary
values for each feature. A ground state value of 0.13 (13% methylated)
generates 1,000 cells of which 130 are 1 (methylated) and 870 are O
(unmethylated). One sample therefore consists 0f 2,000 (unless indi-
cated otherwise) features each with 1,000 simulated cells with binary
values of either 1or 0. Note that our ground state is derived from bulk
sequencing and not single-cell data, because single-cell omics come
with large technical problems and drawbacks including the sparsity of
sequencing coverage, which makeit unfavorable as astarting point for
our simulations®*. Next, for each feature a methylation maintenance
efficiency £, and de novo methylation efficiency E; were generated.
Asindicatedinthe figure legends, we either simulated data with a uni-
versal maintenance efficiency for all features, random efficiencies, or
estimated £,,and £, from empirical data. For the empirical maintenance
estimation, we set the site-specific DNA methylation equilibrium as the
value of the oldest samplein the dataset (GSM1007832)"%, because DNA
methylation trends toward the equilibrium over time?** and estimated
E,,and E,using the equation given by Pfeifer et al.*:

Eqy

Moy = ——-9 1
T T+ Eg—En W

where M, is the equilibrium of the methylation state. Several groups
have suggested a biological range for E,, and £, values, with E,, being
on average ~-99.9% and E, being ~-5% (ref. 24), E,, being ~95% and for
many sites >99% (ref. 25), or E,, being between 95% and 98% and E,
being maximally 23% (ref. 79). These limits guide our simulations,
ensuringthatboth £,,and E4are within biologically meaningful regions
(95% < E,,<100% and 0% < E4 < 23%). Note that the values inferred by
those three publications only serve as an estimation of the biologically
meaningful range for the methylation maintenance efficiency and the
de novo methylation efficiency (95% < E,, <100% and 0% < E4 < 23%).
These three publications did not estimate site-specific values itself.
Because of the nature of this empirical estimation either E,, or £,is fixed,
allowing the other to be estimated from data. Note that it is unlikely that
allsites willhave reached their equilibria with old age. Thisis therefore
only aroughapproximation of the site-specific equilibria, and multiple
E.,and Egvalues will regress to the same equilibrium over time (compare
equation (1)). Thelower thelimit for £, and respectively the higher the
limit for E,, the higher the stochastic variation per time-step on average,
because eachsite (feature) is potentially less well maintained, leading to
aquickerregressionto the equilibrium (perfect maintenance would be
Ey=0%andE,,=100%). For example, CpGsiteswith E,,=99% and E;=1%
will regress toward 0.5 more slowly than CpG sites with £, = 90% and
E4=10%. Next, we randomly altered the state of every single-cell CpG
sitebased ontherespective E, and £, values for eachtime-step (for each
time-step we flipped a coin with the probabilities £,, (to stay methyl-
ated) and £, (to de novo methylate) for each CpGsitein eachcell). One
hundred (unless indicated otherwise) age steps (stochastic variation
applications) from 0to 99 (unless indicated otherwise) were simulated.
The simulations for GrimAge needed lllumina HumanMethylation450
BeadChip dataand started from the youngest humanblood samplein
GSE40279 (GSM990528)%°. Maintenance rates were estimated from the
oldest sample (GSM989863). For training and validating a predictor,
we again computed the average bulk methylation levels for each site
and time point. The training and validation process of the elastic net
regression is the same as described in Extended Data Fig. 1b.

Cell-type correction

The cell-type composition was first estimated with EpiDISH® with
the parameter ref.m=centDHSbloodDMC.m and method=‘RPC’ in
R-4.3. The estimated cell-type composition was subsequently used
in a regression-based correction approach®. In brief, a linear model
is fit for every CpG site using the cell-type composition values via

Im(x~-B+NK+CD4T+CD8T+Mono+Neutro+Eosino) to estimate the
variance in the data that is predicted by the blood cell-type propor-
tions. The remaining residuals depict the variance that is cell-type
independent and canbe added to the mean methylation value foreach
site to obtain the adjusted beta values®. In addition, we calculated a
multivariate linear regression model of the form

Age ~ PredictedAge + CellTypeFractions

which gives P values for each of the variables and also whether the
predicted age is significantly associated with the chronological age
when also correcting for cell-type fractions.

Public aging clocks

We downloaded the elastic net regression coefficients for Horvath’s
pan-tissue clock?, Vidal-Bralo’s blood aging clock*, Lin’s 99-CpG
clock*?, Weidner’s 3-CpG clock® and Levine’s PhenoAge*° clock and
applied themtothe simulated data. The data were simulated as defined
above, with the difference that we only used the clock-specific CpG
sites as the features in the ground state, and we started the arbitrary
simulated age at 16 (the age of the subject of the ground state sample).
Stochastic variation was simulated either with auniversal maintenance
efficiency for all CpG sites or with empirically estimated maintenance
rates asdefined above. For GrimAge** predictions we uploaded the sim-
ulated datasets to the webpage https://dnamage.genetics.ucla.edu/.

Human stochastic data-based clock

The stochastic data-based clock was computed based on simulations
described above. The scale and units of the simulated age are arbi-
trary because we do not know when or in which time-steps the noise
increases, and are therefore different from the chronological age of
biological samples. We found that a rescaling of the simulated age
before training and testing the model is beneficial. First, we rescaled
viamin-max scaling the simulated age to be within O and 1, multiplied
it by 400 and subtracted 120. Note that this transformation on the
arbitrary time-steps will not interfere with the correlation analyses.
Forthe correlation analyses, we excluded the youngest (GSM1007467,
or GSM4682890; from which the ground state was sampled), and
the oldest (GSM1007832; from which the maintenance efficiencies
were estimated as described above) to not confound the correlation
between the chronological age of samples in GSE41037 (ref. 78), and
the predicted age. To train a predictor of the simulated age we used 1
setoflindependent sample perage step from1to 73 for training of an
elastic net regression model with ElasticNetCV from sklearn v.0.23.1
(ref. 76) with the following parameter: 11_ratio =[0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8,0.9], alphas = [1]. The clock was validated on 11,146 inde-
pendent wholeblood or peripheral blood leukocyte samples from the
lllumina Infinium HumanMethylation450 BeadChip and the lllumina
Infinium MethylationEPIC BeadChip (GSE84727, GSE87571, GSE80417,
GSE40279, GSE87648, GSE42861, GSE50660, GSE106648, GSE179325,
GSE210254, GSE210255, GSE72680, GSE147740, GSE55763, GSE117860).

Pan-mammalian clocks

The pan-mammalian stochastic data-based clocks (clocks 1-4) are
built on the youngest blood sample from Tursiops truncatus as the
ground state (or stated otherwise) from the Illumina HorvathMam-
malianMethylChip40 BeadChip platform. Clock 1 used empirically
estimated maintenance efficiency rates from the oldest sample of the
same tissue and species as the ground state for all CpG sites of Lu’s
pan-mammalianrelative age clock. Clock 2 uses the same CpGsites, but
nonempirically estimated a 99% maintenance rate for all sites (unless
stated otherwise). Clock 3 is the same as clock 1 but utilizes all 37,554
CpGsites. Clock 4 is the same as clock 2 but utilizes all 37,554 CpGssites.
Totrainapredictor of the simulated age we used 1 set of 1independent
sample per age step from1to 67 for training of an elastic net regression
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model with ElasticNetCV from sklearn v.0.23.1 (ref. 76) with the follow-
ing parameter: I1_ratio =[0.01, 0.001], alphas = [1]. The predictor was
trained to predict —log(-log(SimulatedAge/MaxAge)) as previously
described”, where MaxAge is the number of age steps simulated (67).
To get the relative age back, the predictions are transformed back via
exp(—exp(-PredictedAge). Lu et al.” used leave-one-fraction-out and
leave-one-species-out cross-validation to get an unbiased estimate of
the clock’s accuracy. Because the stochastic data-based clock needs
only one biological sample as a ground state we directly applied the
clocktoallsamples, thereby further reducing the risk of accuracy bias.
To calculate the Pearson correlation of the predicted and relative age
of species, only species with at least five samples (unless stated other-
wise) were taken. Note that the species have distinct age ranges, which
affects the Pearson correlation values. For validation of our stochastic
data-based clocks on interventions with known lifespan effects for
GHRKO, Tet3-knockout or CR mice, we calculated the adjusted false
discoveryrateand used the t value from atwo-sided ¢-test for the color
gradient (control versus experimental mice; a positive value indicates
ayounger predicted age in the experimental mice).

The statistics for the liver samples of the parabiosis data-
set (GSE224361) and the slope difference of smoking individuals
(GSE50660) were calculated with Python’s statsmodels.regression.
linear_model.OLS and the following regression models:

Parabiosis (GSE224361):

PredictedAge ~ ChronologicalAge + HeterochronicParabiosis

+ ChronologicalAge x HeterochronicParabiosis

Where HeterochronicParabiosisis abinary variable indicating whether
the parabiosis was heterochronic or isochronic.
Smoking (GSE50660):

PredictedAge ~ ChronologicalAge + ExSmoker + CurrentSmoker

+ ChronologicalAge x ExSmoker + ChronologicalAge x CurrentSmoker

Where ExXSmoker and CurrentSmoker are binary variables indicating
the smoking status of the sequenced individuals. The significant inter-
action term ChronologicalAge x CurrentSmoker indicates a steeper
slope (faster aging trajectory) and is shown as negative valuesin Fig. 5d.
The smoking dataset and the reprogramming time-course dataset of
human dermal fibroblasts (GSE54848)* were generated with the lllu-
mina Infinium HumanMethylation450 BeadChip array and was con-
verted by the Array Converter Algorithm of the Mammalian Methylation
Consortium before predicting the samples®.

Gillespie algorithm

For the simulations we adapted the code from ref. 83. We modeled
each CpG site with two different equations, one for the methylation
and one for the demethylation. The probability of switching the state
from one to the other was set to 0.1 for both equations. tmax was set
to5and nrmaxto 8,000. The arbitrary time-steps (of 0-5) were scaled
to within the same range as the predicted age. Note that this does not
affect the Pearson correlation results.

Public RNA-seq processing

All 994 public RNA-seq samples were downloaded and processed in
the same way. First, we preprocessed samples using Fastp v.0.20.0
(ref. 84) with the following parameters -g -x -q 30 -e 30. After pre-
processing, the samples were mapped with Salmon v.1.1 (ref. 85) and
the parameters —validateMappings -seqBias and additionally for
paired-end samples, -gcBias. The decoy-aware index for Salmon was
generated with the WS281 transcriptome build from Wormbase®®.
Theresults of Salmon were combined to the gene-level with tximport
v.1.14.2 (ref. 87). Raw counts were log,-transformed after the addition
of one pseudo-count, each sample was min-max normalized to bring

each sample within the datarange 0-1, and genes O in all 994 samples
were filtered out. To binarize the data zeros were masked by NaN, the
medianwas calculated; genes larger than the medianwere settoland
all other genes were set to O (ref. 37).

Transcriptomic stochastic variation simulation

The ground state consists of all (unless indicated otherwise) gene
counts (normalized as described above) of the biologically youngest
sample (GSM2916344)%*, From this ground state, ten independent
samples foreach time-step (from1to16) were generated (based onthe
distribution thatresulted in the best correlation with BiT age; Extended
Data Fig. 2a) and used to train an elastic net regression as described
above (see ‘Bulk simulations’). Note that the simulated age range is
arbitrary, and the scale and unit are not directly comparable with the
biological age. Similar to the epigenetic stochastic data-based clock,
we found rescaling of the arbitrary simulated time-steps by two to be
beneficial (we multiplied the simulated age by two before training
and testing the data). The elastic net regression model was then used
to predict the biological age of the 993 remaining C. elegans samples
(excluding the youngest, which was used for the ground state). Biologi-
cal ageis calculated by temporal rescaling of the chronological age by
the median lifespan. Briefly, we set a reference lifespan of a standard
wormpopulationto15.5 days of adulthood and calculate arescaling fac-
tor for every sample by dividing this reference lifespan by the median
lifespanreportedin the publication of the corresponding sample. This
rescaling factor is multiplied with the chronological age of the sample™.

Statistics and reproducibility

Allindicated public data were used for validation, except for samples
used as the ground state or to estimate maintenance rates asindicated.
Nostatistical method was used to predetermine sample size. Stochastic
variation accumulation simulations were done at least N=3 times,
as indicated in the figure legends, and can be reproduced with the
public code. Data analyses were not performed blinded. The statisti-
cal tests used are indicated in the figure legends. Full statistics can be
foundinthe Source Data. All data plots were done with Seaborn-0.11.0
(ref. 88) and Matplotlib-3.3.0 (ref. 89). Boxplots are shown with the
center line depicting the median, the box limits showing the bottom
and top quartiles, and the whiskers indicating the 1.5 interquartile
range. Scatterplots showingalinear regression model fitare shownwith
a95% confidence interval. Pearson correlations were computed with
Scipy-1.5.1 stats.pearsonr function’”” and two-sided tests. Effect sizes
(Cohen’sd and Hedges’ g) for pair-wise comparisons were computed
with Pingouin-0.3.6 compute_effsize function®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The human DNA methylation datais available at the National Center for
Biotechnology Information Gene Expression Omnibus (GEO) database
(accession code GSE84727, GSE87571, GSE80417, GSE40279, GSE87648,
GSE42861, GSE50660, GSE106648, GSE179325, GSE210254, GSE210255,
GSE72680, GSE147740, GSE55763, GSE117860, GSE41037, GSE54848,
GSE223748 and GSE224361). The accession codes for all 994 public
Caenorhabditis elegans RNA-seq samples can be found in Supplemen-
tary Table1. The WS281 transcriptome version of C. elegans was down-
loaded from Wormbase®®. Source data are provided with this paper.

Code availability

The code for the simulations can be found in asupplementary file and
at https://github.com/Meyer-DH/StochasticAgingClock. The BiT age
clock code canbe found at https://github.com/Meyer-DH/AgingClock.
TheGillespie algorithm canbe found at https://github.com/karinsasaki/

Nature Aging


http://www.nature.com/nataging
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50660
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50660
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54848
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2916344
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84727
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87571
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80417
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87648
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50660
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106648
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179325
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE210254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE210255
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72680
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147740
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55763
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117860
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41037
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54848
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223748
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224361
https://github.com/Meyer-DH/StochasticAgingClock
https://github.com/Meyer-DH/AgingClock
https://github.com/karinsasaki/gillespie-algorithm-python/blob/master/build_your_own_gillespie_solutions.ipynb

Article

https://doi.org/10.1038/s43587-024-00619-x

gillespie-algorithm-python/blob/master/build_your_own_gillespie_
solutions.ipynb. The ArrayConverterAlgorithm canbe found at https://
github.com/shorvath/MammalianMethylationConsortium/tree/main/

UniversalPanMammalianClock/R_code/ArrayConverterAlgorithm.
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Extended Data Fig. 1| Normal-distributed stochastic variation accumulation
simulations with value limits enable aging clock construction for simulated
data. a) Sample generation explanation. One time-step is defined as the
addition of one-time stochastic variation, thatis random noise, to each feature
ofthe ground state that is sampled from a normal distribution centered at 0
(Top). Samples with different simulated ages are generated starting from the
same ground state, butindependently from each other (Bottom). Asample of
ageladds normal-distributed stochastic variation once to the ground state, a
sample of age 2 twice independently, and so on. b) Model training and validation
explanation. For training and validation 3 sets of independent samples are
generated from the same ground state as explained in Extended Data Fig. 1a.

3 sets comprising the whole age-range, for example 1-100, are used as an input
for an Elastic net regression to train a predictor that predicts the simulated

age of asample, that is how often stochastic variation was added to the ground
state. The 3 independent datasets are used to validate the model and assess the
accuracy. ¢) Unlimited stochastic variation does not allow for any prediction. All
samples within the training and validation dataset started from the same ground
state of 2000 uniformly randomly sampled features between O and 1. For every
whole simulated age step from1to 100, normal-distributed stochastic variation
sampled from N(u =0, 0 =0.05? was added. n = 300 samples (3 independent
samples per age step) were used for training of the Elastic net regression model
to predict the simulated age, and n = 300 independent samples were used for
validation. The x-axis shows the true simulated age, that is the number of times
random stochastic variation was added to the ground state. The y-axis shows the
prediction of the Elastic net regression model of the independent validation data
(n=300, 3independent samples per time point). The sides show the distribution
ofthe samples. d) Same as C), but after addition of stochastic variation the
values were kept within the range of 0-1, for example values bigger to 1 were set
to1(n=300,3independent samples per time point). Limiting the values after
stochastic variation application allows to build highly accurate predictors of the
simulated age. e) The predictions of the independent validation data are robust
to the stochastic variation distribution. The samples were simulated the same
asin D) with different stochastic variation distributions (n = 300, 3 independent
samples per time point). The x-axis shows the standard deviation of the normal
distribution from which the stochastic variation was sampled, thatis N(u=0,
0%=0.005% has a narrow noise distribution with 99.7 % of the sampled data
within the range [-0.015, 0.015], while N(u = 0, 0> = 0.01%) has a wide distribution
with 99.7 % of the sampled data within the range [-0.3, 0.3]. The y-axis shows the
R2value between the simulated age and the predicted age of the independent
validation data (N = 3independent repeats; each with n =300, 3 samples per

time point). Boxplots are shown with the center line depicting the median,

the box limits the bottom, respective top quartiles, and the whiskers the 1.5x
interquartile range. f) Independent Elastic net regression models are highly
correlated if trained on samples starting from the same ground state (consisting
of N =2000 uniformly randomly sampled features between O and 1). The x-axis
shows the coefficients of the Elastic net regression of D), and the y-axis shows the
coefficients of anindependent Elastic net regression on samples that started with
the same ground state, but with independent stochastic variation application
(trained on n =300, 3 samples per time point). g) The predictionin D) is possible
due to aregression to the mean. The x-axis shows the starting values of the 2000
features of the simulated ground state, the y-axis the Elastic net regression
coefficients for the modelin D) (trained on n =300, 3 samples per time point).
Features starting close to O have a positive coefficient, indicating an increase over
the simulated time period, while features close to 1 have a negative coefficient,
indicating a decrease. Features close to 0.5 are more sensitive to random changes
and are closer to 0. h) The accuracy of predictions caps off after ~1000 features
inthe ground state. The x-axis shows how many uniformly randomly features
were sampled for the ground state that was used to build and validate an Elastic
netregression model the same asin D) (trained onn =300, 3 samples per time
point). The y-axis shows the R? as a measure of model accuracy. Of note, the
Elastic net regression will shrink coefficients of features to 0 and thereby reduce
the features relevant for the prediction further. (N=10 independent repeats for
Features Sizes<1000, N =3 independent repeats otherwise; each withn =300,
3samples per time point). Boxplots are shown with the center line depicting the
median, the box limits the bottom, respective top quartiles, and the whiskers
thel.5x interquartile range. i) The amount of stochastic variation sets the pace
ofaging. The Elastic net regression model was trained the same as in D) with
stochastic variation sampled from N(u =0, 6= 0.05%) (n =300, 3 samples per time
point). Color-coded are different independent validation samples, generated
from the same ground state, but with stochastic variation from different normal
distributions. Samples with stochastic variation from a distribution with a
narrower standard deviation (V(i =0, 0= 0.025%) accumulate less noise and

are predicted to age slower, thatis the slope of the prediction is lower. Samples
with stochastic variation from a distribution with a wider standard deviation
(M(u=0,0*=0.1%), N(u=0, 0°=0.2%)) accumulate noise faster, have a steeper
slope of prediction, and reach the maximum age faster. The x-axis shows the true
simulated age, that is the number of times stochastic variation was added to the
ground state. The y-axis shows the prediction of the Elastic net regression model
oftheindependent validation data. All 4 simulated datasets consist of n =300,

3 samples per time point.
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Extended Data Fig. 2| The effect of the feature size and the amount of
stochastic variation on transcriptomic stochastic variation accumulation
simulations. a) The BitAge predictions in Fig. 2a are robust to the distribution
fromwhich the stochastic variation is sampled. The x-axis shows the standard
deviation of the normal distribution (centered at 0) from which stochastic
variation for the simulations is sampled. The y-axis shows the Pearson correlation
between the BitAge prediction of the simulated samples and the number of
stochastic variation additions of the samples. Stochastic variation sampled
from anormal distribution centered at 0 and a standard variation of 0.01shows
the highest Pearson correlation. N = 5 independent experiments are shown.
Boxplots are shown with the center line depicting the median, the box limits the
bottom, respective top quartiles, and the whiskers the 1.5x interquartile range.
b) The feature size is largely irrelevant for the model in Fig. 2b). Predictions of
Elastic net regression models trained on more than 100 features are significantly
correlated with the biological age of C. elegans samples. The x-axis shows the
number of randomly selected features, that is genes, for the ground state, which
were subsequently used to generate data based on stochastic variations (see
methods for details). These simulated samples were used to train the Elastic net
regression. The y-axis shows the Pearson correlation between the biological age

Feature size Feature size

ofthe 993 independent samples (excluding the sample from which the ground
state was sampled) and the prediction of the independent stochastic-data

based model. N =10 independent experiments are shown. Boxplots are shown
with the center line depicting the median, the box limits the bottom, respective
top quartiles, and the whiskers the 1.5x interquartile range. c) Verification of
Extended Data Fig. 2b). Using the same approach as in Extended Data Fig. 2b,

but with randomly shuffled biological ages of the C. elegans samples shows no
significant correlation, indicating that biological age, and not a confounding
variableis correlated with the predictions of the model based on simulated data.
The x-axis shows the number of randomly selected features, that is genes, for the
ground state, which were subsequently used to generate data based on stochastic
variations (see methods for details. These simulated samples were used to train
the Elastic net regression. The y-axis shows the Pearson correlation between the
biological age of the 993 independent samples (excluding the sample from which
the ground state was sampled) and the prediction of the stochastic-data based
model. N =10 independent experiments are shown. Boxplots are shown with

the center line depicting the median, the box limits the bottom, respective top
quartiles, and the whiskers the 1.5x interquartile range.
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Extended Data Fig. 3| DNA methylation stochastic variation accumulation
simulations. a) Comparison between the ground state on the x-axis, and the
ground state (N =2000 uniformly randomly sampled features between O and 1)
after applying stochastic variation from N(u = 0, 6= 0.05%), that is Gaussian noise,
once on the y-axis. b) Comparison between the ground state on the x-axis, and
the ground state (N =2000 uniformly randomly sampled features between 0 and
1) after applying stochastic variation from N(u =0, 0>= 0.05%), that is Gaussian
noise, 100 times on the y-axis. ¢) Comparison of human blood DNA methylation
data of the youngest (x-axis= GSM1007467) and oldest (y-axis= GSM1007832)
subjectsin the public dataset GSE41037 ref. 78. Every dot depicts a DNA
methylation site (n =21389). Values close to 0 and 1 show less variation than
values closer to 0.5. d) Comparison of the ground state on the x-axis (2000
randomly sampled features from the youngest healthy sample (GSM1007467
ref.78)) and the ground state after applying 100x single cell stochastic variation
steps with a universal maintenance efficiency rate of 99.9 %, that is the
maintenance efficiency rate is fixed to be the same for all features (y-axis).

e) Starting single-cell simulations with a ground state consisting of 2000 features
at 0.5 with a universal maintenance of 99 % allows no prediction. An Elastic net
regression model was trained on n =300 samples (3 samples per time point)
starting from the same ground state in which all features were set to 0.5, and
universal maintenance efficiencies £, and £, of 99 %. The x-axis shows the true
simulated age, that is the number of times stochastic variation was added to the

ground state. The y-axis shows the prediction of the Elastic net regression model
oftheindependent validation data (n =300, 3 samples per time point). The sides
show the distribution of the samples. f) Starting single-cell simulations with a
ground state consisting of 2000 features at 0.51 with a universal maintenance of
99 % allows for an accurate age prediction. The training and validation were done
the same as in B) with the difference that all features in the ground state started at
0.51.(n =300, 3samples per time point). g) Starting single-cell simulations witha
ground state consisting of 2000 features at 0.5 with biologically estimated
maintenance rates allows for an accurate prediction. The training and validation
were done the same as in B) with the difference that £,,and £, values were
estimated from biological data (see methods for details). (n =300, 3 samples per
time point). h) Comparison of the ground state on the x-axis (2000 randomly
sampled features from the youngest healthy sample (GSM1007467 ref. 78)) and
the ground state after applying 100x single cell stochastic variation steps (y-axis)
with empirically estimated maintenance efficiency rates with the limits £,,>95%
and £, <23 %.i) The predictionin Fig. 3f) is not due to aregression to the mean,
different to Fig. 1. The x-axis shows the starting values of the 2000 randomly
sampled features from the youngest healthy sample (GSM1007467 ref. 78) as the
ground state, the y-axis the Elastic net regression coefficients for the model in
Fig.3f) (n=300, 3 samples per time point). All ground state features can have
positive as well as negative coefficients, indicating that the prediction is not
based on aregression to the mean.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Epigenetic aging clock predictions correlate robustly
with the amount of stochastic variation. a) Horvath’s epigenetic age
prediction® of samples simulated based on biologically estimated maintenance
rates with the limits £, > 95 % and E; < 23 % starting from biological datafroma
young humanblood sample (GSM1007467)"%, correlates significantly with the
simulated age, that is how often stochastic variation was applied to the ground
state.N =73 independent samples, one per age step from 16 to 88 are shown.

b) Horvath’s epigenetic age prediction of samples simulated based on random
maintenance rates within the limits 97% < E,,, <100%and 0% < E; < 5% starting
from biological data from a young human blood sample (GSM1007467)7%,
correlates significantly with the simulated age, that is how often stochastic
variation was applied to the ground state. The y-axis shows the Pearson
correlation between the simulated age and Horvath’s age prediction. N =30
independent experiments with each n =73 independent samples. Boxplots are
shownwith the center line depicting the median, the box limits the bottom,
respective top quartiles, and the whiskers the 1.5x interquartile range. c) Pearson
correlation of Horvath'’s epigenetic age prediction® of simulated data and the
true simulated age for different universal methylation maintenance efficiencies.
Sindependent experiments (each containing n = 73 independent samples, one
per age step from 16 to 88) with different ground states are shown for each
maintenance efficiency. Boxplots are shown with the center line depicting the
median, the box limits the bottom, respective top quartiles, and the whiskers the
1.5x interquartile range. d) Biological age prediction with PhenoAge*’ of samples
simulated based on biologically estimated maintenance rates with the limits
E,,>95%and E4 <23 % starting from biological data from a young human blood
sample (GSM1007467)", correlates significantly with the simulated age, thatis
how often stochastic variation was applied to the ground state. N =73
independent samples, one per age step from 16 to 88 are shown. e) Biological age
prediction with PhenoAge*® of samples simulated based on random maintenance
rates within the limits 97% < E,;, <100%and 0% < E; < 5% starting from
biological data from a young human blood sample (GSM1007467)7%, correlates
significantly with the simulated age, that is how often stochastic variation was
applied to the ground state. The y-axis shows the Pearson correlation between
the simulated age and PhenoAge’s age prediction. N =30 independent

experiments with each n =73 independent samples. The boxplot is shown with
the center line depicting the median, the box limits the bottom, respective top
quartiles, and the whiskers the 1.5x interquartile range. f) Pearson correlation of
biological age predictions with PhenoAge*° of simulated data and the true
simulated age for different universal methylation maintenance efficiencies.
Sindependent experiments (each containing n = 73 independent samples, one
per age step from 16 to 88) with different ground states are shown for each
maintenance efficiency. Boxplots are shown with the center line depicting the
median, the box limits the bottom, respective top quartiles, and the whiskers the
1.5x interquartile range. g) Horvath'’s epigenetic age prediction® of samples
simulated based on biologically estimated maintenance rates with the limits
E,>97%and E; < 5%starting from biological data from ayoung human blood
sample age 16 (GSM1007467)"%, correlates significantly with the simulated age,
thatis how often stochastic variation was applied to the ground state. The
simulationis the same as in Extended Data Fig. 4a, but with a simulated age range
from 0-99 for an easier comparison with Extended Data Fig. 4h,i.N =100
independent samples, one per age step from 0 to 99 are shown. h) Horvath’s
epigenetic age prediction” of samples simulated based on biologically estimated
maintenance rates with the limits £, > 97 % and E, <5 % starting from biological
data from a middle-aged human blood sample age 37 (GSM1007384)7%, still
correlates significantly with the simulated age, that is how often stochastic
variation was applied to the ground state. The predicted age starts at alater
time-point than the predictions in Extended Data Fig. 4g, and reaches the cap-off
earlier.N=100independent samples, one per age step from 0 to 99 are shown.

i) Horvath’s epigenetic age prediction® of samples simulated based on
biologically estimated maintenance rates with the limits £,,>97 %and E;<5%
starting from biological data from an old human blood sample age 81
(GSM1007791)%, does not correlate significantly with the simulated age, that is
how often stochastic variation was applied to the ground state. Starting the
ground state at an old age does not allow for a correlation between the predicted
epigenetic age and the amount of stochastic variation in the data, since the
prediction already starts in the cap-off. N =100 independent samples, one per
age step from 0 to 99 are shown.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| All tested epigenetic clock predictions correlate
significantly with the amount of stochastic variation. a) Vidal-Bralo’s
epigenetic age prediction* of samples simulated based on biologically estimated
maintenance rates with the limits £,, > 97 %and E, <5 % starting from biological
data from ayoung human blood sample (GSM1007467)7®, correlates significantly
with the simulated age, that is how often stochastic variation was applied to the
ground state. N =73 independent samples, one per age step from 16 to 88 are
shown. b) Vidal-Bralo’s epigenetic age prediction* of samples simulated based
onauniversal maintenance rate of 99 % for all features (CpG sites) starting from
biological data from a young human blood sample (GSM1007467)7%, correlates
significantly with the simulated age, that is how often stochastic variation was
applied to the ground state. N =73 independent samples, one per age step from
16 to 88 are shown. ¢) Lin’s epigenetic age prediction* of samples simulated
based onbiologically estimated maintenance rates with the limits £,,> 97 % and
E4<5%starting from biological data from a young human blood sample
(GSM1007467)7, correlates significantly with the simulated age, that is how often
stochastic variation was applied to the ground state. N = 73 independent
samples, one per age step from 16 to 88 are shown. d) Lin’s epigenetic age
prediction*’ of samples simulated based on a universal maintenance rate of 99 %
for all sites starting from biological data from ayoung human blood sample
(GSM1007467)7%, correlates significantly with the simulated age, that is how often
stochastic variation was applied to the ground state. N = 73 independent
samples, one per age step from 16 to 88 are shown. e) Weidner’s epigenetic age
prediction* of samples simulated based on biologically estimated maintenance
rates with the limits £, > 97 % and E, < 5% starting from biological datafroma
young humanblood sample (GSM1007467)"%, correlates significantly with the

simulated age, that is how often stochastic variation was applied to the ground
state. N = 73 independent samples, one per age step from 16 to 88 are shown.

f) Weidner’s epigenetic age prediction*’ of samples simulated based on a
universal maintenance rate of 99 % for all sites starting from biological data from
ayoung human blood sample (GSM1007467)’, correlates significantly with the
simulated age, that is how often stochastic variation was applied to the ground
state. N = 73 independent samples, one per age step from 16 to 88 are shown.

g) GrimAge’s epigenetic age prediction** of samples simulated based on
biologically estimated maintenance rates with the limits £,,>97 %and E;<5%
starting from biological data from ayoung human blood sample generated with
the 450k Human Methylation Beadchip (GSM990528)%°, correlates significantly
with the simulated age, thatis how often stochastic variation was applied to the
ground state. N =20 independent samples are shown. h) GrimAge’s epigenetic
age prediction** of samples simulated based on a universal maintenance rate of
99 % for all sites starting from biological data from a young human blood sample
generated with the 450k Human Methylation Beadchip (GSM990528)%°,
correlates significantly with the simulated age, that is how often stochastic
variation was applied to the ground state. N =20 independent samples are
shown. i) Horvath’s epigenetic age prediction” of samples simulated with
Gillespies’s algorithm with a universal maintenance efficiency rate of 90 % for all
features (CpG sites) starting from biological data from ayoung human blood
sample (GSM1007467)78, correlates significantly with the simulated age, thatis
how often stochastic variation was applied to the ground state. Since the ground
state was starting froma sample of a16-year-old human, we set the starting point
ofthe simulated age to 16. The time-steps in Gillespie’s algorithm are not fixed,
intotal N =15999 simulations were computed.
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Extended Data Fig. 6 | Human stochastic data-based clock predictions
correlate significantly with the chronological age. a) The predictions of an
Elastic net regression model based on simulated data, correlates significantly
(Pearson correlation 0.87, p-value < 1e-16, two-sided test) with the chronological
age of the independent healthy biological validation samples (GSE41037,
n=392)5, The simulated data is based on biologically estimated maintenance
rates starting with Horvath’s epigenetic clock CpG sites from biological data
from a young human blood sample. The x-axis shows the chronological age of
the subjects from which blood DNA methylation data was processed. The y-axis
shows the predicted simulated age, that is the prediction how often stochastic
variation was added to the ground state and is therefore on a different scale

and unit than the x-axis. b) The feature size is largely irrelevant for stochastic
data-based models in Extended Data Fig. 6a. Predictions of Elastic net regression
models trained on more than 500 random CpGssites (features) are significantly
correlated with the chronological age. The x-axis shows the number of randomly
selected features, that is CpGsites, for the ground state, which were subsequently
used to generate data based on stochastic variations (see methods for details).
These simulated samples were used to train the Elastic net regression. The

y-axis shows the Pearson correlation between the chronological age of the

n =392 healthy samplesin GSE41037 ref. 78 (excluding the sample from which
the ground state was sampled, and the oldest sample from which maintenance
efficiencies were estimated) and the prediction of the independent stochastic-
databased model. N =5independent experiments are shown. Boxplots are shown
with the center line depicting the median, the box limits the bottom, respective

top quartiles, and the whiskers the 1.5x interquartile range. c) Verification of
Extended Data Fig. 6b). Using the same approach as in Extended Data Fig. 6a,
but with randomly shuffled chronological ages shows no significant correlation,
indicating that chronological age, and not a confounding variable is correlated
with the predictions of the model based on simulated data. The x-axis shows the
number of randomly selected features, that is CpGssites, for the ground state,
which were subsequently used to generate data based on stochastic variations
(see methods for details). These simulated samples were used to train the Elastic
netregression. The y-axis shows the Pearson correlation between the permuted
chronological age of healthy samples in GSE41037 ref. 78 (excluding the sample
from which the ground state was sampled, and the oldest sample from which
maintenance efficiencies were estimated) and the prediction of the stochastic-
databased model. N =3 independent experiments are shown. Boxplots are
shown with the center line depicting the median, the box limits the bottom,
respective top quartiles, and the whiskers the 1.5x interquartile range. d) The
same analysis as in Fig. 5a, but the simulated stochastic data were additionally
cell-type corrected and then used to train the clock (Pearson correlation 0.81,

p <1e-16, two-sided test). e) The validation of the stochastic data-based clockin
Fig.5Aon11,146 independent samples from 15 independent datasets (GSE84727,
GSES87571, GSE80417, GSE40279, GSE87648, GSE42861, GSE50660, GSE106648,
GSE179325, GSE210254, GSE210255, GSE72680, GSE147740, GSE55763,
GSE117860) shows a highly significant correlation (Pearson correlation 0.57,
p-value <1e-16).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Human stochastic data-based clock predictions f) GSE87648, g) GSE179325, h) GSE50660, i) GSE42861, j) GSE210254,
correlate significantly with the chronological age of independent validation k) GSE210255,1) GSE72680, m) GSE147740,n) GSE55763, 0) GSE117860. See
data. The validation of the stochastic data-based clock starting from a fetal Fig. 5b foracombined plot. The Pearson correlation and its p-value, calculated
sample (GSM4682890) on 11,146 independent samples from 15independent with a two-sided test, are shown in the figure panels.

datasets a) GSE106648,b) GSE84727, ¢) GSE87571,d) GSE80417, €) GSE40279,
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Horvath’s epigenetic age prediction results for the GSE42861 were used during test and training in Horvath’s original publication.
same 15 datasets. Horvath'’s epigenetic age prediction on the same 11,146 Similar to Extended Data Fig. 7 GSE87648 and GSE147740 do not show any
samples from15independent datasets used in Extended Data Fig. 7. correlation between the predicted and the chronological age. The Pearson

a) GSE106648, b) GSE84727,¢) GSE87571, d) GSES0417, e) GSE40279, f) GSE87648, correlation and its p-value, calculated with a two-sided test, are shown in the
g) GSE179325, h) GSE50660, i) GSE42861, j) GSE210254, k) GSE210255, figure panels.

1) GSE72680, m) GSE147740, n) GSE55763, 0) GSE117860. Note that GSE40279 and
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Extended Data Fig. 9 | Stochastic data-based clock predictions correlate
significantly with the chronological and biological age of pan-mammalian
data. a) Thesamecircle plot asinFig. 5c, but for Clock 2-4. The Pearson
correlation of the relative age of all blood samples of a given species and their
predicted age of the stochastic data-based clocks are shown as lines around

the circle. Species are shown for which at least 5 blood samples were available.
The species are clock-wise sorted by maximum lifespan, starting with Rattus
norvegicus (3.8 years) in the center right, and ending with Homo sapiens
(122.5years). The colors within the circle show the taxonomic order of the
corresponding species, as listed on the right side. Clock 2 (99% maintenance rate
for all CpG sites used in Lu’s pan-mammalian relative age clock®), Clock 3 (CpG
site-specificempirically estimated maintenance rates from the oldest sample of
Tursiops truncatus for all 37554 CpG sites), and Clock 4 (99% maintenance rate
for all 37554 CpG sites) correlate on average highly significantly. b) Example
comparison for Fig. 5d. Predictions of Clock 1for GHRKO (n = 11 biologically
independent samples) vs. WT (n =12 biologically independent samples) liver
samples show significantly lower values for GHRKO samples (two-sided adjusted
p-value 2.15e-04, full statistics in Source Data 1). Boxplots are shown with the
center line depicting the median, the box limits the bottom, respective top
quartiles, and the whiskers the 1.5x interquartile range. ¢) Example comparison
for Fig. 5d. Predictions of Clock 1for Tet3 (n = 8 biologically independent
samples) vs. WT (n =44 biologically independent samples) cerebral cortex
samples show significantly lower values for Tet3 samples (two-sided adjusted
p-value 2.16e-12, full statistics in Source Data 1). Boxplots are shown with the

center line depicting the median, the box limits the bottom, respective top
quartiles, and the whiskers the 1.5x interquartile range. d) Example comparison
for Fig. 5d. Predictions of Clock 1for calorie restricted (CR) (n = 59 biologically
independent samples) vs. normal fed (n =36 biologically independent samples)
liver samples show significantly lower values for CR samples (two-sided adjusted
p-value 3.06e-11, full statistics in Source Data 1). Boxplots are shown with the
center line depicting the median, the box limits the bottom, respective top
quartiles, and the whiskers the 1.5x interquartile range. e) Example comparison
for Fig. 5d. Current-smoker vs. ex-smoker vs. never-smoker aging trajectories are
color-coded. The lines show the linear regression model fit of Seaborn’s Implot
function®, and the shadow around the lines the 95% confidence interval. Current-
smoker show a steeper aging trajectory (slope) compared to never- or ex-smoker.
f) The same as Fig. Se, but for Clock 2. A multivariate regression of chronological
age, the parabiosis treatment, and the interaction shows a significant age variable
(p = 6.11e-12), and interaction variable (p = 1.13e-02). The regression model fit
witha 95% confidence interval (shadowed area) is shown. g) The same as Fig. 5e,
but for Clock 3. A multivariate regression of chronological age, the parabiosis
treatment, and the interaction shows a significant age variable (p = 5.6e-09). The
regression model fit with a 95% confidence interval (shadowed area) is shown.

h) The same as Fig. 5e, but for Clock4. A multivariate regression of chronological
age, the parabiosis treatment, and the interaction shows a significant age variable
(p=1.29e-06). The regression model fit with a 95% confidence interval (shadowed
area) is shown. Full statistics can be found in Source Data1l.
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Extended Data Fig. 10 | Stochastic data-based clock predictions for pan-
mammalian data are robust to the choice of the ground state species.

a) Heatmap showing Pearson correlations between the predicted age of Clock
1trained on the youngest blood sample from species of the corresponding
taxonomic order in the columns (Artiodactyla: Tursiops truncatus, Carnivora:
Odobenus rosmarus divergens, Lagomorpha: Oryctolagus cuniculus,
Monotremata: Tachyglossus aculeatus, Perissodactyla: Equus caballus, Pilosa:
Choloepus hoffmanni, Proboscidea: Loxodonta africana, Rodentia: Marmota
flaviventris, Sirenia: Trichechus manatus, Suidae: Sus scrofa, Tubulidentata:
Orycteropus afer) and the relative age for all species in the rows. The Artiodactyla
column corresponds to Fig. Sc. Values are shown for tissues and species for
whichat least 5samples were available. b) The box-plots show the distribution of
Pearson correlation values of Extended Data Fig. 10a. Clock 1 trained on samples
starting from aMonotremata ground state with accumulating variation show on
average alower accuracy. For each of the 12 clocks (based on a different ground
state as shown on the x-axis) the n = 57 biologically independent species orders
(asindicated in Extended Data Fig. 10a) are shown as dots. Boxplots are shown
with the center line depicting the median, the box limits the bottom, respective
top quartiles, and the whiskers the 1.5x interquartile range. ¢) The same as

Extended Data Fig. 10b but for Clock 2 trained with 99.99% maintenance rate

for all sites of Lu’s pan-mammalian relative age-clock. For each of the 12 clocks
(based on a different ground state as shown on the x-axis) the n = 57 biologically
independent species orders (as indicated in Extended Data Fig. 10a) are shown as
dots. Boxplots are shown with the center line depicting the median, the box limits
the bottom, respective top quartiles, and the whiskers the 1.5x interquartile
range. d) The same as Extended Data Fig. 10b but for Clock 3 trained on
empirically estimated maintenance rates from the species specified in Extended
Data Fig.10a for all 37443 CpGsites. For each of the 12 clocks (based on a different
ground state as shown on the x-axis) the n = 57 biologically independent species
orders (as indicated in Extended Data Fig. 10a) are shown as dots. Boxplots are
shown with the center line depicting the median, the box limits the bottom,
respective top quartiles, and the whiskers the 1.5x interquartile range. e) The
same as Extended Data Fig. 10b but for Clock 4 train with 99.99% maintenance
rate for all 37443 CpGssites. For each of the 12 clocks (based on a different ground
state as shown on the x-axis) the n = 57 biologically independent species orders
(asindicated in Extended Data Fig. 10a) are shown as dots. Boxplots are shown
with the center line depicting the median, the box limits the bottom, respective
top quartiles, and the whiskers the 1.5x interquartile range.
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