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A large normative connectome 
for exploring the tractographic 
correlates of focal brain 
interventions
Gavin J. B. Elias   1,2,10, Jürgen Germann   1,2,3,10, Suresh E. Joel4, Ningfei Li   5, 
 Andreas Horn   5,6,7,8, Alexandre Boutet   1,2,9 & Andres M. Lozano1,2 ✉

Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo 
exploration of white matter connections in the human brain. Normative structural connectomics – the 
application of large-scale, group-derived dMRI datasets to out-of-sample cohorts – have increasingly 
been leveraged to study the network correlates of focal brain interventions, insults, and other regions-
of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables 
researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the 
absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human 
Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization 
techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has 
already been utilized in at least 18 peer-reviewed publications, most frequently in the context of 
neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly 
available, this connectome will constitute a useful tool for understanding the wider impact of focal brain 
perturbations on white matter architecture going forward.

Background & Summary
The brain networks underlying healthy function and disease have long been a major focus of neuroscientific 
research. Many of the earliest insights into this topic came from focal lesion studies and cortical stimulation 
work, including famous studies by pioneers like Broca1 and Penfield2. While that body of work remains relevant 
to this day3,4, subsequent studies have built on this foundation using newer non-invasive neuroimaging and 
electrophysiological techniques, such as PET/SPECT5, EEG6, and MRI7. Most recently, further MRI advances 
have facilitated more direct in vivo interrogations of brain connectivity – both in circumscribed areas of interest, 
and across the whole brain (‘connectomics’). This line of inquiry has primarily used two MRI techniques: resting 
state functional MRI (rsfMRI), which relies on BOLD signal fluctuations to infer region-to-region crosstalk 
(i.e., the coordinated workings of the brain)8, and diffusion-weighted MRI (dMRI), which approximates white 
matter connections in the brain based on the directionality and anisotropy of water diffusion9. Importantly, 
both techniques emphasize the interconnectedness of disparate brain regions and have been widely applied to 
neuromodulation research in particular, offering a means to explore how focal interventions such as lesions 
or electrical stimulation might impact distributed networks10. While these MRI sequences can be acquired in 
individual subjects, they can also be utilized to build ‘normative connectomes’: group-level aggregates of rsfMRI 
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or dMRI scans obtained from a large number of other subjects. Normative connectomes have been described 
as generalized ‘wiring diagrams’ of the human brain and offer the obvious advantage that they can be applied to 
any cohort of interest, not just those in whom dMRI or rsfMRI sequences have been acquired10. This is particu-
larly relevant in the case of patients undergoing procedures like deep brain stimulation (DBS), in whom these 
sequences are often not routinely obtained and may be contraindicated due to issues like movement artifacts and 
hardware safety11,12. Normative connectomes may also play a special role in understanding how spontaneously 
occurring focal insults (e.g., in the context of stroke) disrupt the normal organization of the brain13 and how 
this may produce various symptoms. In particular, numerous studies have employed normative connectivity 
mapping to probe for distributed networks that may underpin post-stroke phenomena such as central pain14, 
parkinsonism15, and depression16. In each case, the connectome is typically ‘seeded’ using a region-of-interest 
(ROI), which represents the site of network perturbation, yielding a set of fiber streamlines (structural) or cor-
related brain areas (functional) that would tend to be impacted by this perturbation in the typical individual. 
Normative connectomics can also be used to augment more traditional neuroimaging analyses, such as by cal-
culating the connectivity patterns of areas where differences or changes in brain structure or activity/metabolism 
were detected17,18.

Normative dMRI-based connectomes (i.e., ‘structural’ normative connectomes) in particular have seen 
increasingly widespread use as a tool for exploring the network-level correlates of neuromodulatory interven-
tions (see Elias et al. 2022 for review)19. This prevalence may in part relate to the fact that the white matter 
streamlines identified by structural connectomics offer a more tangible, readily visualized fiducial with which to 
guide procedural targeting and (in the case of DBS) post-operative refinement of stimulation location through 
parameter selection. Published neuromodulation studies employing structural connectomic techniques have 
used a variety of connectome datasets for their analyses. The most frequently used structural connectomes have 
been assembled from healthy adult MRI scans collected as part of the Human Connectome Project (HCP). HCP 
scans are acquired using specialized MR hardware and consequently boast superior signal-to-noise ratios and 
fidelity than can be achieved at most academic centres20,21. The number of HCP subjects sampled to construct 
these connectomes has also varied; a handful of studies have used larger connectomes compiled from ~400–
850 individuals22,23, while the majority have utilized connectomes aggregated from 30–40 healthy subjects24–34. 
Other studies have leveraged dMRI scans from patients with the same condition as the population of interest 
in order to construct ‘disease-specific’ connectomes that might better capture the connectivity differences that 
likely characterize patients with certain longstanding neurological conditions35. To date, this has primarily been 
attempted in the context of Parkinson’s disease using dMRI scans acquired as part of the Parkinson’s Progression 
Markers Initiative (PPMI), with structural connectomes ranging from ~40 to ~90 subjects in size31,33,36–42.

The current study presents and describes a newer HCP-derived, MNI-space structural connectome that has 
been assembled from the multi-shell dMRI scans of 985 healthy young adults and comprises ~12 million fiber 
streamlines – the largest connectome of its kind yet described. While made publicly available for the first time 
here, this connectome has in fact been employed for at least 18 published articles on topics such as DBS for 
varied neurological and psychiatric conditions14,17,18,43–51, focused ultrasound (fUS) for essential tremor52–54, nat-
urally occurring or surgically created lesions resulting in neuropsychiatric sequelae14,55, and exploratory papers 
examining future applications of connectomics56,57. The connectome comprises a whole-brain tractogram that 
can be seeded with ROIs (e.g., DBS activation volumes or brain lesions) to identify and output streamlines that 
traverse the seed regions. This in turn facilitates exploration of the wider connectivity profile of focal brain inter-
ventions or injuries and – when paired with clinical/behavioural data – also enables streamline-level investiga-
tions into the relationship between white matter engagement and clinical outcome. These kinds of analysis have 
so far been conducted primarily – although not exclusively – using DBS activation volumes, but can be similarly 
performed using ROIs ranging from stroke lesions or non-invasive stimulation activation fields through to loci 
of group-wise volumetric/functional neuroimaging differences. Here, we detail the steps used to construct this 
normative connectome, describe the various freely available neuroimaging files and scripts that facilitate its use, 
and provide evidence to validate its anatomical basis and applicability to neuromodulatory research.

Methods
Data acquisition.  This connectome was assembled using MRI data from healthy young adults who were 
scanned as part of the Human Connectome Project (HCP) S1200 subject release (https://www.humanconnec-
tome.org/study/hcp-young-adult/document/1200-subjects-data-release). Specifically, T1-weighted, T2-weighted, 
and multi-shell dMRI scans were downloaded from the S1200 subject release repository. A total of 1065 individ-
ual subjects’ scans were initially downloaded, which yielded usable data (i.e., one of each of the aforementioned 
sequences) from 1000 subjects after incomplete and corrupted files were discarded. Of this 1000-subject-strong 
cohort, 538 subjects (53.8%) were female. By age range at the time of scanning, 217 subjects (21.7%) were 22–25 
years of age, 433 (43.3%) were 26–30 years of age, 341 (34.1%) were 31–35 years of age, and 9 (0.9%) were 36 or 
older.

All MR images had been obtained using customized 3.0 Tesla Connectome Skyra scanners with high-end 
gradient coils. The acquisition parameters for each sampled sequence were as follows: i) T1-weighted scan 
(3D MPRAGE): TR = 2400 ms; TE = 2.14 ms; TI = 1000 ms; flip angle = 8 deg; FoV = 224 × 224 mm; voxel 
size = 0.7 mm isotropic; ii) T2-weighted scan (3D T2-SPACE): TR = 3200 ms; TE = 565 ms; flip angle = vari
able; FoV = 224 × 224 mm; voxel size = 0.7 mm isotropic; iii) multi-shell dMRI: TR = 5520 ms; TE = 89.5 ms; 
flip angle = 78 deg; FoV = 210 × 180 mm; voxel size = 1.25 mm isotropic; number of gradient tables = 3; num-
ber of b0 acquisitions = 6 (per gradient table); number of diffusion weighting directions = 90 (per gradient  
table); b-values = 1000, 2000, and 3000 s/mm2. Previous work has indicated that multi-shell dMRI data (i.e., 
dMRI scans acquired with multiple b-values) confers greater sensitivity to non-dominant fiber populations58.  
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All imaging files had already been subjected to the HCP Minimal Preprocessing Pipeline, which removed spa-
tial/artefact distortion, performed cross-modal registration, and aligned (i.e., rigidly registered using 6 degrees 
of freedom) images to MNI152 standard space21. With respect to the dMRI scans specifically, this preprocessing 
pipeline normalized the b0 image intensity across runs and corrected for EPI distortions, eddy-current-induced 
distortions, gradient-nonlinearities, and subject motion.

Image normalization.  The downloaded HCP data were then processed using Lead-Connectome (https://
www.lead-dbs.org/about/lead-connectome/), a matlab-based toolbox that is freely available as part of the 
Lead-DBS software package (https://www.lead-dbs.org/). We chose to use this software primarily on the basis 
of ease of use; it constituted a convenient wrap-around package that integrated well with many of the other tools 
necessary for this analysis. The connectome construction pipeline is summarized in Fig. 1. First, an initial round 
of multispectral normalization to MNI space was performed. This entailed (i) linearly coregistering each subject’s 
fractional anisotropy (FA) and T2-weighted scans to their T1-weighted scan using SPM (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/)59; (ii) nonlinearly normalizing all three image types in a multispectral fashion to 
Montreal Neurological Institute (MNI ICBM 2009b NLIN Asymmetric) standard space using the ‘effective low 
variance’ preset (as implemented in Lead-DBS) of the ANTs SyN algorithm (http://stnava.github.io/ANTs/)60,61. 
FA images were derived from the originally downloaded dMRI files using code originally published in the 
DTI and Fiber Tracking Matlab library (https://www.mathworks.com/matlabcentral/fileexchange/21130-dti
-and-fiber-tracking)62 and implemented in Lead-DBS (https://github.com/netstim/leaddbs/blob/master/ext_libs/
ftracking/ea_DTI.m). For the initial normalization step, the contribution of the FA images to the multispectral 
warp was disabled; this was to avoid problems associated with attempting to register the high-resolution HCP FA 
acquisitions to the pre-existing FA MNI template (an adapted version of the 2 × 2 × 2 FMRIB 58 template that had 
been resampled to 2009b NLIN Asymmetric space). The adequacy of coregistration and normalization for each 
of the three images was determined through visual inspection and any poorly registered/normalized files were 
discarded. Specifically, we manually assessed Lead-DBS-generated quality control images for each transforma-
tion, verifying that the contours of prominent brain structures such as the cerebellum, brainstem, thalamus, and 
cerebral lobes were closely aligned (i.e., within a few millimetres) between the coregistered/normalized source 
image and the target image. No subjects were excluded at this stage. Next, the 1000 normalized FA images were 
averaged using FSL tools (FMRIB Software Library) to create a new, high-resolution FA template in MNI 2009b 
NLIN Asymmetric space. A second round of multispectral normalization to MNI space was then performed 
using the newly created high-resolution FA template. The same ANTs algorithm outlined above was employed but 
the contribution of the individual FA images to the warp was this time enabled. The results of this step were again 
visually inspected as described above and 15 subjects were discarded on account of poor normalization outcome 
(see Supplementary Figure 1 for exemplar quality control images).

Fiber tracking and connectome construction.  Whole-brain fiber tracking was next performed using 
the dMRI data from the remaining 985 subjects. Of this cohort, 529 subjects (53.7%) were female. By age range 
at the time of scanning, 212 subjects (21.5%) were 22–25 years of age, 430 (43.7%) were 26–30 years of age, 334 
(33.9%) were 31–35 years of age, and 9 (0.9%) were 36 or older. Fiber tracking was performed in the native (i.e., 
non-normalized) subject dMRI space using generalized Q-sampling imaging (GQI, a model-free deterministic 
tractography method) as implemented in DSI Studio (http://dsi-studio.labsolver.org)63. GQI has been shown to 
better resolve crossing fibers compared to more traditional techniques such as diffusion tensor imaging64.

In each subject, 250,000 streamlines (minimum length = 10 mm, maximum length = 500 mm) were sampled 
from across the whole brain, as defined by a white matter mask based on the coregistered T2-weighted scan. 
Tracking parameters included a step size of 0.46875 mm and an angular threshold of 60°. The anisotropy thresh-
old was automatically determined by DSI Studio. Utilizing the transforms described in the previous section, 
each subject’s fiber streamlines were then warped into MNI 2009b NLIN Asymmetric space using previously 
described methods implemented through the Lead-DBS software package65,66. After visually inspecting the fiber 
tracking and fiber normalization results (no unsatisfactory results were observed), the normalized fiber stream-
lines from each subject were aggregated into a single template using Lead-Group Connectome. Specifically, 
12,000 streamlines were randomly subsampled from each subject’s previously identified 250,000 streamlines; 
these were then combined to create a final group tractogram comprising 11,820,000 unique streamlines.

Data Records
Data records as a contribution.  The data and scripts described in this data publication are freely available 
on FigShare67.

This work contributes data records that permit the use of our HCP-derived whole-brain structural con-
nectome (nicknamed ‘dTOR-985’ [Toronto 985-subject diffusion-weighted MRI connectone]) for neu-
roimaging analyses at different resolutions. First, the complete connectome itself is provided in the form of 
a matlab-readable file (‘dTOR_985.mat’). A version of the full connectome that can be directly viewed and 
manipulated using streamline viewing/editing programs like MI-Brain (https://github.com/imeka/mi-brain) 
or TrackVis (https://trackvis.org) – i.e., a whole-brain tractogram file comprising 11,820,000 streamlines 
(“dTOR_full_tractogram.trk”) – is provided as well. Three voxel-resampled connectome files are also supplied 
in matlab-readable format: one in 0.5 mm resolution (‘dTOR_fibers_vox_half_mm.mat’), one in 1.0 mm reso-
lution (‘dTOR_fibers_vox_1_mm.mat’), and one in 2.0 mm resolution (‘dTOR_fibers_vox_2_mm.mat’). These 
files share their resolutions and spacing with the MNI ICBM Asymmetric template brains (https://www.bic.mni.
mcgill.ca/ServicesAtlases/ICBM152NLin2009) and contain the ‘fibers_vox’ variable, a 1 × 11,820,000 cell array 
that – for each streamline in the full connectome – lists the x/y/z coordinates of all voxels within the respective 

https://doi.org/10.1038/s41597-024-03197-0
https://www.lead-dbs.org/about/lead-connectome/
https://www.lead-dbs.org/about/lead-connectome/
https://www.lead-dbs.org/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://stnava.github.io/ANTs/
https://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking
https://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking
https://github.com/netstim/leaddbs/blob/master/ext_libs/ftracking/ea_DTI.m
https://github.com/netstim/leaddbs/blob/master/ext_libs/ftracking/ea_DTI.m
http://dsi-studio.labsolver.org
https://github.com/imeka/mi-brain
https://trackvis.org
https://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
https://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009


4Scientific Data |          (2024) 11:353  | https://doi.org/10.1038/s41597-024-03197-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 1  Visual summary of connectome construction pipeline. The major steps (coloured arrows, italicized and 
coloured text) taken to build the structural connectome are outlined alongside representative brain images from 
two subjects. First, the native T1-weighted, T2-weighted, and dMRI acquisitions for each HCP S1200 subject 
were coregistered (red arrows). Next, all three native scans were nonlinearly normalized to MNI ICBM 2009b 
NLIN Asymmetric space using a multispectral warp approach (green arrows). (*This was an iterative process and 
involved the creation of a new, 1000-subject FA template in MNI ICBM 2009b NLIN Asymmetric space – please 
see Image normalization section of Methods for further information). Separately, a whole-brain tractogram 
(250,000 streamlines) was generated from each patient’s native dMRI data using GQI (turquoise arrows). This 
tractogram was then normalized to MNI space using the previously obtained subject-specific transform (curved 
green arrows). Each tractogram was subsampled, randomly selecting 12,000 streamlines from the total streamline 
count (magenta arrows). Finally, the subsampled streamlines of all 985 HCP subjects were aggregated to form 
a single, 11,820,000-streamline group tractogram in MNI space. FA = fractional anisotropy; GQI = generalized 
Q-sampling imaging; HCP = Human Connectome Project; MNI = Montreal Neurological Institute.
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MNI brain template that encompass said streamline. Please note that the voxel-resampled connectome files are 
provided in zipped format and must be unzipped prior to use.

Two self-contained custom-built matlab scripts are also provided: the ‘dTOR_compute_fiber_weights.m’ 
script, and the ‘dTOR_create_trk.m’ script. These scripts are to be run one after the other to identify and out-
put fiber streamlines that overlap a given region-of-interest (ROI). The freely available SPM software pack-
age (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)59 must be downloaded and added to the matlab path 
before use. The first script (‘dTOR_compute_fiber_weights.m’) takes an ROI input file in nifti format and uses 
this to seed the structural connectome, identifying streamlines that intersect the ROI and ascribing them a cer-
tain weight. This weight corresponds to the voxel value of the ROI, which may be either binary or non-binary. If 
the ROI is binary, all streamlines that intersect it will be given a value of 1. If the ROI is non-binary, streamlines 
intersecting it will be assigned a value corresponding to the highest-value voxel that they intersect (Fig. 2). This 
script must be pointed towards one of the voxel-resampled connectome files; the choice of which file to use 
determines the resolution in which the computation will be performed (note that the ROI file must also match 
this resolution; this can be achieved by first resampling the ROI file to the appropriate MNI template brain). 
With respect to specific computational methods, the script first loads the voxel-resampled connectome .mat 
file. It then reads the header information and voxel values of the input ROI file, creating a 3D array (‘im’) whose 
values are normalized by the maximum voxel value in the input file. Next, the script creates a vector (‘fibers_wt’, 
initialized with zeros) with length equal to the number of elements in the voxel-resampled connectome file’s 
‘fibers_vox’ variable (i.e., the total number of streamlines in the connectome). It subsequently initiates a loop to 
iterate through each streamline in ‘fibers_vox’; within this loop, another loop iterates through each all of the vox-
els that encompass said streamline, checking if these voxels also have a non-zero value within the ROI ‘im’ array 
and assigning this non-zero value to the corresponding element in the ‘fibers_wt’ vector in this circumstance. By 
the end of these loops, the ‘fibers_wt’ vector thus contains information about ROI overlap with each streamline 
in the connectome, denoting non-overlap with a 0 and overlap with a non-zero value. This information is saved 
and output as a .mat file that may be opened and processed using software like matlab or R to conduct statisti-
cal analyses (e.g., to elucidate ‘discriminative streamlines’ using streamline-level t-tests or to determine which 
streamlines are common to all or most patients in a given cohort).

To convert the information saved in the matlab data file to a viewable form, the second script (‘dTOR_cre-
ate_trk.m’) must be run. This script takes the .mat file created by the first script (or another .mat file, such  

Fig. 2  Weighted and unweighted streamline output. Exemplar seeds and streamline outputs are displayed 
on the backdrop of a high-resolution FA template in MNI space. (A) Seeding the structural connectome with 
a binary ROI (e.g., a DBS activation volume/volume of tissue activated; left image) generates unweighted 
streamlines that intersect the ROI (right image). (B) Using a non-binary ROI (e.g., a DBS e-field; left image) 
instead generates weighted streamlines whose value reflects that of the highest-value ROI voxel they intersect 
(right image). FA = fractional anisotropy; DBS = deep brain stimulation; ROI = region-of-interest.
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Fig. 3  Virtual dissection of canonical white matter tracts. Exemplar association, commissural, and projection 
bundles are delineated from the 985-HCP subject connectome and compared with literature-derived 
equivalents (inset panels framed with red borders). Each bundle is displayed in three-dimensions against a 
backdrop of the 1000-HCP subject fractional anisotropy template in MNI ICBM 2009b NLIN Asymmetric 
space. For display purposes, only 20% of structural connectome streamlines are visualized. (A) The left 
cingulum bundle (midsagittal view) is compared to an equivalent depicted in Wu et al.70. (B) The left uncinate 
fasciculus (midsagittal view) is shown alongside an equivalent (blue) from Baur et al.71. (C) The full corpus 
callosum (superior view) is exhibited alongside a a parcellated version depicted in Radwan et al.69.  
(D) The anterior commissure (superior view) is shown next to a reconstruction by Radwan et al.69. (E) The left 
corticospinal tract (midsagittal view) is compared to an equivalent (blue) from Radwan et al.69. (F) The left 
medial lemniscus (midsagittal view) is displayed alongside an equivalent from Radwan et al.69. The literature-
derived tracts shown in (A,B) represent the dMRI data of a single subject, while those shown in (C–F) 
represent aggregate data from 20 subjects. All reference images are adapted with minor edits from their original 
publications under a Creative Commons Attribution License (CC BY). HCP = Human Connectome Project.
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as one generated through statistical analysis) as an input and writes out a tractogram file (.trk) that can be 
opened in a streamline viewing/editing software such as MI-Brain (https://github.com/imeka/mi-brain) or 
TrackVis (https://trackvis.org). It must also be pointed towards the complete, non-resampled connectome file 
(‘dTOR_985.mat’), as this file contains the ‘fibers’ variable from which the script extracts the fiber points infor-
mation necessary to reconstruct the streamlines specified in the input .mat file. The dTOR_create_trk.m script 
also allows the user to set thresholds for which streamlines to generate based on streamline weight, and to spec-
ify the colour scheme used for visualizing these weights.

This work also provides files that permit the user to conduct an equivalent streamline analysis using the 
Lead-DBS software package (https://www.lead-dbs.org/). Detailed instructions on how to use these files as part 
of the Lead-DBS pipeline can be found on the corresponding website. A ‘full’ version of our structural connec-
tome for use in Lead-DBS is provided, as are ‘half-scale’ (aggregating 6000 streamlines from each HCP subject), 
and ‘quarter-scale’ (aggregating 3000 streamlines from each HCP subject) versions.

Finally, this work also contributes a newly computed, high-resolution (voxel size: 0.5 × 0.5 × 0.5 mm) 
FA template in MNI 2009b NLIN Asymmetric space, created as part of our connectome construction pipe-
line by averaging the FA images of 1000 healthy young adults (https://www.humanconnectome.org/study/
hcp-young-adult/document/1200-subjects-data-release). This file (FA_template_1000_HCP.nii.gz) may have 
utility as a registration template for high-resolution dMRI data, as was the case for our connectome construction 
pipeline. It is provided in nifti format (nii.gz) and can be readily visualized with standard software tools such 
as FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes) and Display (https://www.bic.mni.mcgill.ca/software/
Display/Display.html).

Original datasets used.  The original data used for connectome construction were provided by the 
Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil 
Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for  

Fig. 4  Effect of resolution on streamline sampling output. An ROI in the bilateral internal capsule is used to 
seed the structural connectome at three different resolutions (0.5 mm – green outline, 1.0 mm – blue outline, 
2.0 mm – red outline). Streamline output generated at each resolution is shown as voxelwise binary maps. 
Images of the ROI and output are visualized on coronal and axial slices, respectively, of a high-resolution 
FA template in MNI space. Overall, the number and location of streamlines sampled from the structural 
connectome were similar when compared between (A) 0.5 mm and 1.0 mm resolution conditions; (B) 1.0 mm 
and 2.0 mm conditions. By binary map volume, differences between 0.5 mm and 1.0 mm resolution output 
amounted to 4.8% of the total 0.5 mm resolution output. Differences between 1.0 and 2.0 mm resolution 
output amounted to 8.7% of the total 1.0 mm resolution output. FA = fractional anisotropy; MNI = Montreal 
Neurological Institute.
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Fig. 5  Explaining clinical variance in response to neuromodulatory interventions with structural connectome 
output. The 985-HCP subject structural connectome has been used in prior publications to explain clinical 
variance in out-of-sample cohorts. (A) Li et al.45 employed a ‘half-scale’ version of the structural connectome 
to analyze the relationship between white matter streamline engagement and clinical outcome in OCD patients 
treated with DBS at various targets. They found that ‘discriminative’ streamlines from a given cohort were 
able to explain meaningful variance in out-of-sample patients. (B) Elias et al.51 used the full connectome to 
identify discriminative streamlines in a large cohort of patients treated with SCC-DBS for depression. Overlap 
with these streamlines was again able to explain meaningful variance in an out-of-sample cohort of SCC-DBS 
patients. Images are adapted with minor edits from Li et al. (panel A) and Elias et al. (panel B) under a Creative 
Commons Attribution License (CC BY). DBS = deep brain stimulation; HCP = Human Connectome Project; 
OCD = obsessive-compulsive disorder; SCC = subcallosal cingulate area.
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Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. 
These data are available from https://www.humanconnectome.org/study/hcp-young-adult/document/1200-s
ubjects-data-release.

Technical Validation
Canonical white matter tract reconstruction.  To demonstrate that our structural connectome can be 
used to conduct valid, anatomically sound streamline-based analyses, we performed virtual dissections to isolate 
major canonical white matter tracts. This was accomplished by generating ROIs in MNI space – informed by 
previously published dMRI virtual dissection atlases68,69 – and using these to seed the connectome. Exemplars 
were created in this way for association (left cingulum bundle and left uncinate fasciculus), commissural (corpus 
callosum and anterior commissure), and projection pathways (left corticospinal tract and ascending somatosen-
sory fibers of the left medial lemniscus). Each of these reconstructed tracts was consistent with known anatomy 
and appeared similar to white matter tract bundles featured in previously published dMRI studies (Fig. 3)69–71. 
We also performed a quantitative comparison of these same exemplar tracts with equivalent white matter bundle 
labels sourced from the publicly available IIT Human Brain Atlas (https://www.nitrc.org/projects/iit/), which is 
derived from 72 young (age 20–40), healthy subjects72,73. To do so, we obtained binary maps of our tracts and 
evaluated their voxelwise overlap with the IIT bundle labels, thresholding these labels at 5% and 10% of their 
maximum streamline density. In five out of six cases, our exemplar tracts captured a substantial portion of the 
5%-thresholded IIT bundle voxels (left cingulum: 88%; left uncinate: 40%; corpus callosum: 82%; anterior com-
missure: 54%; left corticospinal tract: 73%) and an even larger share of the 10%-thresholded bundles (left cin-
gulum: 94%; left uncinate: 56%; corpus callosum: 90%; anterior commissure: 61%; left corticospinal tract: 82%). 
Our left medial lemniscus tract captured only 18% and 25% of voxels belonging to the 5%- and 10%-thresholded 
equivalent IIT bundle, respectively, although this IIT bundle contained numerous streamlines running within the 
cerebral peduncle that are not conventionally assigned to the medial lemniscus74,75.

Effect of differing resolutions on streamline sampling.  To clarify the impact that resolution has on 
fiber tract sampling, we seeded the structural connectome with an exemplar ROI (an ablative fUS lesion within 
the anterior limb of internal capsule, sourced from the OCD cohort described in Germann et al.52) three times: 
once at 0.5 mm resolution, once at 1.0 mm resolution, and once at 2.0 mm resolution. The streamlines generated 
in each case were similar both in total count (0.5 mm: 68,799 streamlines, 1.0 mm: 70,298 streamlines, 2.0 mm: 
71,723 streamlines) and general course (Fig. 4). However, differences were evident when binary maps of each 
streamline output were compared in a voxelwise fashion. Compared to the 0.5 mm resolution streamline output, 
the 1.0 mm resolution output differed by 4.8% in terms of volume (i.e., gained or lost streamline-containing vox-
els). The difference between the 1.0 mm and 2.0 mm resolution streamline output was 8.7% by volume relative 
to the 1.0 mm output. These results indicate that the connectome is likely suitable for use at lower resolutions, 
although some variability in streamline output will occur.

Prior use in neuromodulation patient cohorts.  As mentioned previously, the structural connectome 
described here has already been used to explore the network correlates of response to focal neuromodulatory 
interventions17,18,43–54. Two particular published studies – Li et al.45 and Elias et al.51 – attest to the potential utility 
of this connectome in explaining variance in response to DBS (Fig. 5). In Li et al., the ‘half-scale’ version of the 
structural connectome was employed to conduct a streamline-level statistical analysis of fiber engagement in 
patients treated with DBS of various targets for obsessive-compulsive disorder (OCD). Identifying a bundle of 
streamlines whose engagement by DBS activation volumes related to clinical improvement (i.e., discriminative 
streamlines), the authors were able to explain meaningful variance in OCD symptom reduction in out-of-sample 
cohorts (R = 0.49–0.50, P < 0.05) on the basis of discriminative streamline overlap45. More recently, Elias et al. 
leveraged the full-scale structural connectome to perform a similar streamline-level analysis in patients undergo-
ing subcallosal cingulate area DBS (SCC-DBS) for depression. This effort similarly yielded discriminative stream-
lines that – when segmented into white matter tracts previously implicated in SCC-DBS response76 – explained 
meaningful variance in the improvement of depressive symptomology in an out-of-sample SCC-DBS cohort 
(R = 0.43, P < 0.05)51. These examples speak to the ability of the structural connectome to capture robust clinico-
anatomical relationships that might inform neuromodulatory interventions.

Code availability
Our matlab scripts are also accessible on GitHub (https://github.com/Germann-lab/dTOR-985-Connectome.git). 
The files necessary for using our connectome in the Lead-DBS software package are accessible from Lead-DBS 
(https://www.lead-dbs.org/).
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