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Disproportionate declines of formerly 
abundant species underlie insect loss

Roel van Klink1,2 ✉, Diana E. Bowler1,3,4,5, Konstantin B. Gongalsky6, Minghua Shen1,2, 
Scott R. Swengel7 & Jonathan M. Chase1,2

Studies have reported widespread declines in terrestrial insect abundances in recent 
years1–4, but trends in other biodiversity metrics are less clear-cut5–7. Here we 
examined long-term trends in 923 terrestrial insect assemblages monitored in 106 
studies, and found concomitant declines in abundance and species richness. For 
studies that were resolved to species level (551 sites in 57 studies), we observed a 
decline in the number of initially abundant species through time, but not in the 
number of very rare species. At the population level, we found that species that were 
most abundant at the start of the time series showed the strongest average declines 
(corrected for regression-to-the-mean effects). Rarer species were, on average, also 
declining, but these were offset by increases of other species. Our results suggest  
that the observed decreases in total insect abundance2 can mostly be explained by 
widespread declines of formerly abundant species. This counters the common 
narrative that biodiversity loss is mostly characterized by declines of rare species8,9. 
Although our results suggest that fundamental changes are occurring in insect 
assemblages, it is important to recognize that they represent only trends from those 
locations for which sufficient long-term data are available. Nevertheless, given the 
importance of abundant species in ecosystems10, their general declines are likely to 
have broad repercussions for food webs and ecosystem functioning.

Scientific, public and policy-related interest in the plight of insects 
has soared in recent years11,12, owing largely to reports of considerable 
losses of insect abundance and biodiversity1–4 and fears of concomitant 
declines in associated ecosystem services11,13. Often confused, however, 
is exactly which measures of insect biodiversity are being considered. 
Biodiversity is not a single metric, but rather a generalized concept that 
encompasses the numbers of individuals and species, species’ relative 
abundances (for example, evenness and numbers of rare and common 
species), as well as the identities of species and their interactions. All 
of these aspects of biodiversity inform the changes that are occur-
ring to insect biodiversity, and might reveal hitherto-overlooked—but 
crucial—changes. However, although declines in insect abundance 
and biomass have been shown in large-scale studies and syntheses2,5,6, 
trends in other biodiversity metrics have been less clear. Species  
richness, for example, has been found to decline along with abundance 
in some large studies5,14, whereas in other studies, insect richness was 
reported to be stable6,7.

A better understanding of declines in insect abundance can emerge 
through the study of multiple (complementary) measures of biodi-
versity15, and, in particular, by examining trends in rare and abundant  
species. For example, even if overall abundances of terrestrial insects 
are declining2, there are several possible scenarios by which other 
metrics of biodiversity can concurrently change depending on how 
species with different relative abundances respond16. Box 1 presents 

some of these scenarios, particularly focusing on changes in initially 
abundant and rare species that can strongly influence various biodi-
versity metrics. We here define ‘abundant’ and ‘rare’ species along 
the continuum of abundances in a local assemblage (that is, where 
the species falls within the ‘species abundance distribution’17 (SAD)), 
rather than according to their regional occupancy or range size. Abun-
dant species contribute the most individuals to any given assemblage, 
and their trends should therefore have the strongest influence on the 
changes in total abundance16. In fact, a decline in total abundance is 
unlikely without declines of the most abundant species. If we assume 
that the most abundant species decline on average, three simplified 
scenarios are conceivable for the rarer species. Relative to abundant 
species, rare species may, on average, (1) decline proportionally,  
(2) decline less or (3) decline more. Each of these scenarios gives distinc-
tive signatures in various biodiversity metrics and in the shape of the 
SAD (see Fig. 1 and Box 1). There are other possible scenarios consistent 
with total abundance declines—for example, the most abundant species 
showing no declines—but this would require the unlikely scenario of 
extinction of most of the rarer species.

Here we examine the multidimensional nature of biodiversity trends 
in assemblages of terrestrial insects, arachnids (spiders and mites) and 
Entognatha (springtails and allies)—hereafter described collectively as 
‘insects’, for brevity—during the past decades using a large compilation 
of insect surveys through time18. Although previous work has examined 
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some of these multifaceted patterns for subsets of taxa (for example, 
butterflies14 or hoverflies16), locations6,7 and/or habitat types19, our 
synthetic approach allows us to assess the prevailing trends in mul-
tiple biodiversity metrics from the openly available long-term insect 
assemblage data across locations, taxa and habitats. Our focus here is 
on terrestrial insects only, because two recent studies from Europe20 
and North America21 have used extensive data compilations to assess 
changes to the diversity of freshwater invertebrates. We identified 89 
terrestrial studies from our previous data compilation16 in which one 
or more metrics of biodiversity either were provided or could be calcu-
lated from the provided data (see Methods). We added newly published 
years to the existing data, and fixed some minor data issues (updates 
available in the online repository22). To this, we added 17 new studies 
from the literature published between 2018 (the year of compilation by 
ref. 18) and 2021. We also searched the literature for studies in Spanish, 
Portuguese and Chinese to complement our original search in English 
and Russian, which allowed us to add two more studies. In all, we were 
able to analyse data from 106 studies with 923 total sampling sites 
(Extended Data Fig. 1 and Supplementary Tables 1 and 2), spanning 
between 9 and 64 years. Of these, 75 studies provided measures of at 
least two metrics of biodiversity (usually abundance and richness) 
and 57 studies (from 551 sites) provided full community data (that is, 
all taxa resolved to a consistent taxonomic level, usually species level) 
so that we could consider trends in multiple metrics of biodiversity 
simultaneously. We analysed the trends in total abundance (largely 
the same analyses as described previously2, but with the newly added 
studies), several metrics of diversity (for example, species richness, 

Simpson diversity), a metric of evenness, and trajectories of popula-
tions of species within the assemblage. We used hierarchical Bayesian 
autoregressive models to account for study- and site-level variation. 
Our models present the yearly change estimates and the 80%, 90% 
and 95% credible intervals (CI) of these estimates. Following previous 
studies2,23, we interpreted any 95% CI that did not overlap zero as strong 
evidence for a directional trend (that is, we are more than 97.5% certain 
that there is a directional trend in our data), whereas a CI overlapping 
zero between the 90 and 95% CIs was interpreted as moderate evi-
dence, and an overlap between the 90% and 80% CIs was interpreted 
as weak evidence (that is, a 10% chance that the actual mean of the  
data is zero).

As expected from our previous analysis2, we found strong evidence 
for an overall decline in the total abundance of insects in this updated 
and expanded dataset of terrestrial assemblages. The overall change 
in abundance was −1.49% per year (95% CI: −2.18, −0.79) (Fig. 2), but 
there was considerable variation at the dataset level (interquartile 
range of the dataset-level predictions: −2.28% to −0.53%; Extended 
Data Fig. 1). This general trend was similar but slightly weaker (−1.22% 
(CI: −2.01, −0.42)) when we restricted the analyses to datasets that 
provided full community data (n = 57 studies; dotted lines in Fig. 2). 
We next determined whether these abundance declines translated 
into changes in other metrics of biodiversity, and, if so, which scenar-
ios from Box 1 were most or least consistent with those changes. We 
found moderate evidence for an overall decline in species richness 
across all assemblages (−0.29% annually (95% CI: −0.64, 0.06); −0.20%  
(−0.57, 0.15) on the full community dataset; Fig. 2). This negative overall 

Box 1

Conceptual relationships between biodiversity metrics and mean 
population changes
We start with the assumption of overall abundance declines, on 
the basis of results from previous studies2,6, although scenarios 
could be drawn for other cases. In Fig. 1, we show three conceptual 
scenarios (see Methods) by which initially abundant and rare 
species can change through time, illustrated by changes in the 
population abundances of species (Fig. 1a). These changes, in turn, 
lead to changes in several diversity metrics (Fig. 1b; insets represent 
modelled slope estimates, in relation to 0 at the dashed line), as well 
as changes in the numbers of species in different initial abundance 
intervals of the SAD (Fig. 1c) and in the population abundance trends 
of species in these abundance intervals (Fig. 1d). For each scenario 
illustrated, we start with a simple community of 43 species and 211 
individuals with a typical skewed SAD comprising a few abundant 
species and many rare species45, and assume similar changes in 
total abundance through time (Fig. 1b, ‘Total abundance’).
(1)	 In the first scenario, all species decline proportionally (that is, the 

same percentage decline each year) (Fig. 1a, left). In this case, 
species richness will decline as the rarest species go extinct, 
whereas Simpson’s diversity index (inverted and converted to 
its effective number of species28)—which weights abundant 
species more heavily—does not change, because the relative 
abundances of all species remain the same. Evenness increases 
slightly as the species abundances converge (bound between 1 
and the highest value; Fig. 1b). Furthermore, the SAD will show a 
decline in the number of very abundant species, and probably a 
moderate increase in the number of rare species, as species that 
are intermediately abundant at first move to lower abundance 
intervals, but the exact outcome depends on how many rare 

species are lost (Fig. 1c). The mean population trends of all initial 
abundance intervals will be the same (Fig. 1e).

(2)	In the second scenario, the abundant species decline more than 
the rare species do (Fig. 1a middle). In this scenario, species 
richness does not change, because no rare species are lost, but 
diversity and evenness increase through time as the relative 
abundances become more similar (Fig. 1b). Because of these 
changes, the SAD shows a strong increase in the number of 
rare species, as species that were initially abundant move to the 
interval with those already rare (Fig. 1c). Finally, at the population 
level, initially abundant species have more negative population 
trends than do initially rare ones (Fig. 1d).

(3)	In the third scenario, the rare species decline more than the 
abundant species do (Fig. 1a right). In this scenario, species 
richness declines more strongly than in the other scenarios, as 
more species go extinct, and diversity and evenness also decline 
(Fig. 1b). Here, there will be a decline in the number of rare 
species in the SAD, because the abundant species do not decline 
so much that they become rare and do not compensate for the 
loss of rare species (Fig. 1c). At the population level, species in 
the lowest abundance intervals show the strongest declines 
(Fig. 1d; the deviation from the straight line for the lowest 
abundance interval is caused by rounding to integers31).

Note that in these simplified scenarios we did not include 
colonization by new or invasive species, or increasing populations. 
Colonists and increasing species could balance out some declining 
species. The code for these simulations is provided in ref. 31.
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trend in species richness, albeit slight, contrasts with several analy-
ses of insects and other taxa that found little evidence for consistent 
directional trends6,7,24.

Although concomitant declines in abundance and species richness 
are expected from a sampling process (that is, fewer species would 
be expected when fewer individuals are sampled from a species 
pool15,25), species’ relative abundances might also change. We found 
no evidence for any trends in diversity on the basis of individual- and 
coverage-based rarefaction26,27, nor in Shannon’s and Simpson’s diver-
sity metrics (converted to their effective number of species28), which 
differentially weight abundant species (Fig. 2), suggesting no changes 
in relative abundances. Sensitivity tests showed that these trends were 
robust to the exclusion of very long and very short time series (Extended 
Data Fig. 2). However, when we restricted our analyses to studies that 
included many sites (10, 20, or 50), we found weaker declines in abun-
dance and richness (Extended Data Fig. 3).

Our finding of a lack of temporal trends for these diversity metrics 
could imply that there was no change in the relative abundances of 
species through time15,25. However, we did find strong evidence for an 
increase in a metric thought to reflect evenness29, calculated as the ratio 
of the inverse Simpson index to the number of species (Fig. 2). Because 
this metric is calculated by dividing changes in species richness (which 
was declining) by inverse Simpson diversity (which was not changing), 
an increase could be expected. However, because our observations 

of changes in species richness appear to be driven largely by changes 
in the total abundance of insects (as indicated by the lack of trends in 
rarefied richness), changes in this metric need not reflect changes in 
relative species abundances.

On the basis of the patterns of the different biodiversity metrics 
(Fig. 2), a scenario of steeper declines of rare species is highly unlikely 
(scenario 3, Box 1). However, these patterns could be consistent with 
the proportional declines in scenario 1 (for example, a lack of change in 
the diversity indices), or with the steeper declines of initially abundant 
species (increasing evenness) in scenario 2.

To distinguish between these scenarios, we compared trends in the 
number of species in different abundance categories (as in Fig. 1d). 
For this, we first divided the total SAD of each site into five equally 
sized intervals of abundance, and then calculated the number of spe-
cies in each interval each year (for a visual explanation, see Extended 
Data Fig. 4). We found the strongest declines (−0.80% annually (−0.96, 
−0.65%)) in the number of species in the highest abundance interval 
(Fig. 3), but there was also moderate to strong evidence for declines 
of species in the intermediate abundance intervals (between −0.33% 
and −0.43% annually). The lowest abundance interval (0–20%) showed 
little evidence for any trend. This interval contains the highest number 
of species (Extended Data Fig. 4), and represents several categories 
of trends, such as stable rare species, species that were previously 
more abundant, species that went locally extinct and newly colonizing 
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Fig. 1 | The three conceptual scenarios described in Box 1 give rise to 
distinct changes in biodiversity patterns. a–d, Effects of three conceptual 
scenarios by which species change over time (all species decline in proportion 
to each other (scenario 1, red); abundant species decline more than rare species 
do (scenario 2, turquoise); or rare species decline more than abundant species 
do (scenario 3; gold)) on population abundances (a), four biodiversity metrics 
(b), the numbers of species in different SAD intervals (c) and the mean population 
abundance trends of species in these abundance intervals (d). For biodiversity 

metrics that depend on species counts (species richness and evenness (b) and 
species richness per SAD interval (c)), a small amount of error was added. The 
insets in b represent modelled slope estimates in relation to 0 at the dashed 
line. Simpson diversity was converted to its effective number of species28. See 
‘Extraction and calculation of biodiversity metrics’ in the Methods for an 
explanation of the biodiversity metrics. Note that because this simple conceptual 
model is intended to mimic a real dataset to some extent, the trends should be 
interpreted qualitatively rather than quantitively.
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species. We found similar results using alternative ways to bin species 
(see Extended Data Fig. 5). These patterns are again consistent with 
either the proportional declines scenario, or the scenario of stronger 
declines for abundant species, but not with the scenario of greater 
declines of locally rare species from Box 1.

Declines in the number of species in the higher abundance intervals 
might give support to the scenario of disproportionate declines for 
initially abundant species. However, proportionate declines are still 
possible, because this would also result in the greatest loss of species 
from the highest abundance interval, as losses from lower abundance 
intervals are partially offset by gains of species that were formerly in 
higher abundance intervals (Box 1). To disentangle these possibilities, 
we tested whether differences in trends were detectable at the popu-
lation level by calculating the mean population trends of all species 
within each initial SAD interval. A common pitfall when relating popu-
lation trends to their initial values is detecting false trends owing to a 
regression-to the-mean effect30. That is, if, for example, an extremely 
high value is found at the start of a time series owing to stochastic-
ity in population dynamics or sampling, the values for the following 
years are likely to be lower, which would lead to the false detection of 

a declining slope over time. Hence, the species with highest starting 
values are likely to show the strongest declines, and species with the low-
est starting values the strongest increases, simply by returning to their 
long-term averages. To avoid this, we corrected the detected trends for 
each abundance interval by adding an expected regression-to-the-mean 
effect calculated from the longest and most robust time series (see 
Methods) and also conducted a series of sensitivity analyses (Extended 
Data Figs. 6 and 7).

Our population-level analyses indicated that species that were most 
abundant at the start of the time series showed, on average, the strong-
est declines (−7.72% annually; Fig. 4), despite considerable variability. 
Species in all other initial abundance intervals also on average showed 
strong evidence for declines, but with smaller magnitudes (between 
−4.63% and −6.14 annually) (Fig. 4; for the results of other ways of clas-
sifying species by their initial abundances, see Extended Data Fig. 7). 
We found that the most abundant species still showed the strongest 
declines when we took the most conservative approach to defining 
abundance intervals (based on species’ mean abundances across the 
whole time series, hence avoiding regression-to-the-mean effects; 
Extended Data Fig. 7).

Among the populations with the steepest declines were species 
from across the insect tree of life (for example, beetles, moths and 
grasshoppers), and they included both agricultural pests, such as 
the corn aphid Rhopalosiphum maidis, and beneficial insects, such as 
predatory beetles (Supplementary Data 3 in the code repository31). 
Indeed, such declines in the populations of formerly abundant insect 
species have been reported from several locations, and include mon-
arch butterflies (Danaus plexippus)32 and other butterfly species33, 
the meadow spittlebug (Philaenus spumarius)34 and the now-extinct 
Rocky Mountain grasshopper (Melanoplus spretus)35. This potentially 
common phenomenon of strong declines in formerly abundant species 
could offer an explanation for the observations that there are gener-
ally fewer insects in terrestrial systems than there used to be2. To test 
whether there is indeed a strong association between the mean popula-
tion trends and the total abundance trends in a dataset, we related the 
dataset-level random effects of these metrics for all initial abundance 
groups. Although we found that all abundance groups had strong asso-
ciations with total abundance loss, the strongest associations were for 
the more abundant species (Extended Data Fig. 8), supporting our 
assertion that losses of abundant species underlie the overall declines 
in insect abundance. Overall, on the basis of our compilation of openly 
available insect time-series data, we find that changes in local insect 
biodiversity are dominated by losses in total abundance and weaker 
losses of species richness, with the strongest declines observed for 
species that were more abundant at the start of the time series. Of the 
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scenarios described in Box 1, these findings are most in line with sce-
nario 2 (stronger declines for formerly abundant species), through 
stronger trends of taxa with a higher initial abundance; they also have 
some characteristics of scenario 1 (proportional declines), with sta-
ble diversity metrics and declines in richness. We argue that the most 
likely explanation for these patterns lies somewhere in between the 
two: initially abundant species decline strongly, but proportionally to 
each another, whereas the declining rarer species are often—but not 
always—replaced by other (now) rare species, leading to declines in 
richness. This result counters studies showing that biodiversity change 
is characterized by common species faring better (or less badly) than 
rarer species8,9. These studies used range size, not local abundance, as a 
measure of rarity, and did not analyse changes in species abundances. 
Still, reconciling these contrasting findings will require further work.

Despite these overall trends, we must clearly identify the limitations 
of data availability for our study. Our data, like those in most syntheses, 
are not a representative global sample, but have a strong bias towards 
Europe and North America (Extended Data Fig. 1 and Supplementary 
Table 2). When analysed without data from Europe and North America, 
we found no trend in abundance or richness (Extended Data Fig. 9), 
which probably reflects the limited data available and the high variabil-
ity of trends in other regions, rather than an absence of change. Hence, 
our estimated mean trends cannot be geographically extrapolated; 
instead, they simply represent the most up-to-date state of the avail-
able knowledge one can gain from existing (open) data.

Although our work here focuses on trends of terrestrial assemblages, 
which have so far dominated the discussion on insect declines, trends 
of freshwater assemblages are similarly important. Our previous analy-
sis indicated a widespread increase in the abundance of freshwater 

insects2, which was confirmed in a more extensive analysis for European 
streams that also revealed a mean increase in species richness20. By 
contrast, a recent synthesis of stream ecosystems in the USA21 indi-
cated strong declines in the abundance but increases in the richness 
of freshwater insects during the past decades. Much still needs to be 
done to compare and contrast the trends of different geographical 
regions and to understand the differences in the changes of terrestrial 
and freshwater insect assemblages.

Our main finding—the disproportionate declines of initially abundant 
insect species—could help to explain the frequent observations that 
there are fewer insects now than in the past. Given the nature of our 
synthetic analysis across many taxa, systems and locations, we can only 
speculate on the underlying causes, which are likely to be associated 
with recent anthropogenic changes. For example, case studies have 
attributed the declines of some abundant species to climate change34,36, 
land-use intensification37 and decreases in plant nutritional quality38. 
Some species might also have been abundant in the past because they 
benefited from certain types of historic land use (for example, tradi-
tional, low-input agriculture), but have declined more recently as land 
uses have changed37,39. Abundant species are often disproportionately 
important for ecosystem structure10, functioning40,41 and services42,43, 
as well as for the diversity and abundance of higher trophic levels10,36,44, 
so their declines are likely to have already led to a broad-scale rewiring 
of ecosystems, and will continue to do so.
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Methods

Data collection and selection
The basis for the current analysis was the InsectChange database18, 
which we developed to compile openly available long-term (ten or 
more years; nine or more years for datasets from under-represented 
regions) standardized surveys of insect, springtail and arachnid groups 
(families or assemblages). For the current analysis, we updated the 
database, which initially focused on assemblage-level abundance and 
biomass, by extracting species richness and other diversity metrics 
from these same publications, and including new data that met our 
criteria published until February 2021. This information included both 
data added to open-access repositories since our last download, and 
data from newly published studies. For a new study to be included 
in our compilation, we required that studies provided two or more 
calculated biodiversity metrics, over a time span of at least ten years, 
or the full set of taxa and their abundances for each time point so that 
we could compute multiple metrics. We searched for new publica-
tions fitting these criteria by searching Web of Science (for English 
language) and https://www.elibrary.ru (for Russian language), using 
the same search terms that were used to compile the InsectChange 
database18 (see Supplementary Methods for the exact search strings). 
For this study, we increased our global coverage by searching papers 
published in Spanish and Portuguese using https://www.scielo.org/ 
and in Chinese using https://www.cnki.net/. This yielded two addi-
tional studies with appropriate data. In addition, we searched all 
papers citing references1,2. We also used cross referencing and per-
sonal networks to find data. In total, we were able to add 17 new stud-
ies from which we could extract data to the InsectChange database, 
and we updated nine studies that provided more recently published  
years of data.

For the purposes of our analyses here, we only included stud-
ies of terrestrial insects because many of our datasets on aquatic 
insects within the InsectChange database18 did not have a consist-
ent taxonomic resolution over time to calculate reliable biodiversity 
metrics, and larger, more comprehensive syntheses of freshwater 
insects have recently been published20,21. We also excluded data-
sets that had only biomass measurements, as well as experimental 
sites at which researchers manipulated the environmental condi-
tions. Within each sample, we excluded invertebrates that did not 
belong to the classes Insecta, Entognatha (springtails and allies) or 
Arachnida. For studies in which the provided total abundance or 
richness values might have included non-insects, we checked that 
these assemblages consisted of at least 90% insects, arachnids or 
springtails and excluded them if that proportion was unknown or 
smaller. Finally, we excluded one study (DatasourceID = 70) that was 
originally derived from the Global Population Dynamics Database46 
and later included in BioTIME47 because its methods and methodo-
logical consistency could not be verified (M. Dornelas, personal  
communication).

Dataset description
In total, for the analysis presented here, the database consists of 106 
studies, 75 of which provided at least 2 diversity metrics, and 57 pro-
vided raw data from which we could calculate all biodiversity met-
rics (Supplementary Table 1). The data were heavily skewed towards 
Europe and North America (69% of studies providing abundance 
data, and 74% of studies providing compositional data; Supplemen-
tary Table 2). The median duration of the studies was 20 years, with 
a median of 11 sampling years. The number of sites per study ranged 
between 1 and 138, with a median of 3. More details on the dataset 
characteristics are provided in Supplementary Table 3, with a full 
account of all studies48–143 included in Supplementary Table 4. All 
data used are available as Supplementary Data 1 and 2 in the code  
repository31.

Extraction and calculation of biodiversity metrics
Metrics of biodiversity change. For datasets that provided derived 
metrics of species abundances or different metrics of species diversity 
(for example, species richness), we simply included those values in our 
analyses after first ensuring that investigators performed appropri-
ate standardization in their sampling methodology, or after the fact, 
in their calculation of metrics. For datasets in which the numbers of 
individuals of each species were provided, we calculated several biodi-
versity metrics after ensuring appropriate standardization of sampling 
(for example, sampling effort, time of year; further discussed below).

For each study, we calculated as many of the following metrics as 
possible given the data:
•	Abundance: Total number of individuals observed per year.
•	Species richness: Number of species, morphospecies or higher taxa 

observed in each year.
•	Rarefied richness: Richness accounting for differences in numbers 

of individuals; that is, the expected number of species in each year, 
had the number of individuals caught been equal to the lowest total 
abundance observed in any year in the time series (if the lowest num-
ber was lower than ten individuals, we calculated the rarefied richness 
for ten individuals).

•	Coverage-based richness: Expected number of species if 80% of the 
community had been sampled26.

•	Effective numbers of species given Shannon diversity (H′): A diversity 
metric that quantifies the uncertainty (entropy) in the prediction of 
species’ identity converted to its effective number of species (eH′) 
(ref. 28).

•	Effective number of species given Simpson diversity (D): A diver-
sity metric that measures the probability of intraspecific encounter 
(with replacement) converted to its effective number of species: 1/D  
(ref. 28).

•	Evenness: The ratio between the effective number of species given 
Simpson diversity (see above) and species richness (1/D)/S. This metric 
of evenness is among those recommended previously29 (I1/D).

We calculated coverage-based richness using the iNEXT144 and all 
other biodiversity metrics using the vegan145 package for R.

Changes in the SAD. To investigate changes in the number of species 
that were differentially common or rare in the community, we studied 
changes in the SAD. The SAD describes the distribution of species’ 
relative abundances in an assemblage17, here quantified through bins 
of log10-transformed abundances plotted on the x axis, and the number 
of species in each bin on the y axis. Although the precise shape of this 
distribution and what this means for communities has been discussed 
at length146, we were only interested in changes in the number of species 
in different SAD intervals.

On a per-site basis, we defined intervals of the SAD and counted the 
number of species falling into them as follows. First, we created five 
equally sized intervals of the log10 abundances (Extended Data Fig. 4b), 
which ranged between zero and the maximum abundance observed at 
that site over the course of the time series. In other words, the baseline 
for ‘locally abundant’ at a site is the highest abundance of any species 
recorded from the site over the course of the entire time series. Our 
second way of slicing up the SAD was to assign four quartiles based on all 
abundance values in the time series (Extended Data Fig. 4c), each quar-
tile having (approximately) the same number of observations (some 
variation exists because of rounding). Given the skewed SADs typical 
for insect assemblages45, the fourth quartile of our second approach 
is naturally the widest, and can occupy over 50% of the abundance 
range (Extended Data Fig. 4c). By contrast, with our first approach, the 
uppermost quartile contained the lowest number of species, composed 
of the small number of very common species. For each year, we then 
calculated the number of species whose log10 abundances fell in each 
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interval or quartile. For ties, we took the number of species smaller 
than the quartile value. We present the results of the first approach in 
the main text and those of the second approach in the Extended Data 
Fig. 5, as both lead to similar conclusions.

Mean population changes. To test whether species that were at first 
more abundant showed more negative temporal trends, we modelled 
the mean population trend of all taxa in relation to their initial abun-
dances. For this, we used 34,317 populations at 584 sites from 56 stud-
ies. We grouped species per site into 6 initial abundance intervals: 5 
groups based on the range of log10 abundances of the species found 
at a site in the classification year(s) (similar to the division for the SAD 
brackets above, but described in more detail in the next paragraph), 
and a group for the species that were not detected in the classification 
years. Because we were interested in local rarity, we allocated species 
by their initial abundances per site. An alternative way of studying 
trends in relation to species’ rarity would have been to look at regional 
abundance or occupancy, but this was not possible for most of our 
datasets, For an analysis studying occupancy changes including part 
of the presently used data, see ref. 8.

To allocate species at each site to an initial abundance interval, we 
created 5 equally sized intervals between 0 and the log10-transformed 
highest observed abundance value at the start of the time series. We 
allocated each species to one of the five intervals according to its 
initial abundance. The species that were absent in the classification 
year(s) were not analysed because their mean trends would in most 
cases be positive, leading to a positive mean trend. In the main text, 
we used the data collected in the first sampling year to define species’ 
initial abundances, but other ways of allocating species by their ini-
tial abundance values are possible; for example, on the basis of their 
average abundance values over years 1 and 2 or years 1 to 5, or their 
average abundance across the whole time series (that is, assigning 
generally abundant and rare species, as has been done previously147). 
The effect of such choices on the slope estimates is shown in Extended  
Data Fig. 7.

We discarded sites with no or only one species detected in the classifi-
cation year(s), or with only a small number of equally abundant (usually 
singleton) species (that is, when no vector of relative abundance values 
could be calculated without infinitely large numbers). In all, between 
5 and 25 sites in 10 studies were discarded, depending on the number 
of years used for classification.

When relating trend slopes to their initial values, one is likely to find 
the steepest slopes for the species with the most extreme (highest 
and lowest) starting values, owing to a regression-to-the-mean (RtM) 
effect30. This occurs when, owing to stochastic variation in population 
dynamics, or random sampling effects, a high value that is drawn in 
the first year is followed by lower values in subsequent years, closer to 
the long-term average, leading to an overall apparent negative trend, 
even when no such decline exists. This can be dealt with by calculat-
ing an expected RtM effect from a control group, and adding this to 
the estimate of a treatment group148. Because an independent con-
trol group for real-world monitoring data, without stochasticity or 
sampling variation, is not available, we used the best sampled sites in 
our dataset to estimate an expected RtM effect. We first selected only 
those sites with at least 15 years of sampling data (260 sites from 26 
datasets), and modelled the mean population trends of each initial 
abundance group. To estimate the potential contribution of RtM to 
estimated long-term trends, we separated the data used to estimate 
initial abundance from the data used to estimate the long-term trends. 
Thus, we left-censored the data by one year (and three years as a sensi-
tivity test), and modelled the population trends again, while using the 
censored year to classify the initial abundance. The difference in year 
slope estimates between the full time series and the censored time 
series was, for each initial abundance group, used as a correction fac-
tor, and added to the estimates of the full analysis, to shrink the final 

estimates towards zero. In the main text, we present the corrected data 
based on one-year censoring; the potential effects of more censoring 
and the number of years used for classification can be found in Extended 
Data Figs. 6 and 7 and the calculated correction factors can be found 
in Supplementary Table 5.

Note that our most conservative method for assigning species to 
abundance intervals—on the basis of their mean abundances across all 
years—is not affected by RtM effects. Qualitatively, our results remain 
the same across these sensitivity analyses.

For datasets that needed sample-based rarefaction to equalize sam-
pling effort over years (see below), we used the rounded median values 
per species per year as input for these population models.

Extraction of biodiversity metrics from publications
We extracted pre-calculated biodiversity data from studies that did 
not provide raw data. We could extract the following metrics across 
the time series: total abundance (n = 89 studies), number of species 
(n = 28), rarefied richness (n = 3), Shannon diversity (n = 4) and Simpson 
diversity) (n = 1).

Although we endeavoured to run our models on one value per year 
(to avoid complications from species’ phenologies), this was not always 
possible, because some studies provided these metrics per month 
or per season. In these cases, any potential seasonal patterns were 
dealt with by including a random intercept on time period of sampling  
(see ‘Statistical analysis’).

Preparation of raw data. For studying changes in biodiversity metrics, 
it is essential that sampling effort over the years is equal. Sampling 
methods were standardized within sites (for example, type of trap 
used or type of survey), but could vary in sampling effort (for example, 
duration of sampling period or number of subsamples). To equalize 
this variation, we processed all studies that provided raw community 
data in such a way that each year in each site provided one value for 
each biodiversity metric, on the basis of the same sampling effort 
(that is, same number of weeks sampled, same number of traps active 
and/or same number of subsamples taken), summed over the same 
season(s). In this way, any phenological differences or shifts among 
years in sampling effort should be accounted for in the best possible 
way, and stochastic variation should be minimized. Because every 
study had a different design, we had to decide on the standardization 
strategy on a case-by-case basis.

The community data available to us can be divided into three types, 
with different processing requirements:
(1)	 The study provided one species-by site-by-year matrix. We used 

this directly to calculate all biodiversity metrics for analysis.
(2)	Species-by-site by-year data were provided together with an account 

of the sampling effort (number of samples underlying each row is 
reported, but no raw data were provided per individual sample). 
Here, we subsampled the years with higher trapping effort to pro-
vide the expected community composition if the number of samples 
had been the same as in the year with the lowest sample size. We 
repeated this subsampling procedure 100 times, and calculated 
the means of each biodiversity metric, to be used as model input. 
In some cases, it was clear that subsampling to the lowest sample 
size would lead to a large loss of data, and in such cases, it was more 
economical to discard a year than lose a large amount of data. A 
practical example: if year 1 has 300 individuals in 6 traps and year 
10 has 500 individuals in 4 traps, we subsampled 200 individuals  
(4/6 of 300) from year 1, so that each year has the number of indi-
viduals equivalent to 4 traps. We repeated this resampling 100 times 
to derive 100 hypothetical community compositions, and calcu-
lated the biodiversity metrics and population abundances for each  
iteration.

(3)	Exact data were provided per sampling event (number of individuals 
per species per trap/site per date), but the number of traps, dates 



or periods sampled is variable among years (owing to trap malfunc-
tions or changes in sampling design or sampling frequency). Here, 
we first divided the years into monthly or bimonthly periods, and 
then decided whether we could maximize data use by including 
more months or more years (that is, whether to exclude periods 
that were not sampled each year, or exclude years that did not have 
samples in each period). The aim here was to maximize data use, 
so that we could attain the highest quality of data for a maximum 
number of years. For each period, we then subsampled the mini-
mum number of samples observed in any year from the available 
samples, and added these together to form one yearly sample. This 
was repeated 100 times, and the biodiversity metrics were calcu-
lated each time. The mean values of these 100 iterations were used 
for model input. A practical example: ten pitfall traps per site were 
usually emptied weekly, but sometimes fortnightly, the trapping 
period changed from year-round at the start to May–September in 
later years, and sometimes samples were missing owing to flood-
ing or trampling by livestock. Here, we first discarded all months 
other than May–September. Then we allocated five monthly peri-
ods and calculated the number of sampling days (sum of sampling  
period × number of traps) for each month. We then drew random 
samples (without replacement) from the available samples per 
month, until the total number of sampling days added up to the 
minimum number sampling days observed. We added the months 
up to form one yearly sample and calculated our metrics. This was 
repeated 100 times.

The sampling effort is thus equal among all years in each site, but 
not necessarily among different sites within a study.

Taxonomic considerations. Insects make up the largest class of eu-
karyotic organisms, but at least 80% of species remain undescribed. 
In addition, the expertise required to identify insects to species level 
is high. No person can identify all species in an area, and there are often 
life stages in which a species can’t morphologically be distinguished 
from other species (for example, juveniles or one of the sexes).

It is therefore no surprise that, in our amassed data, there is a large 
variability in taxonomic precision among studies, and that there is a 
trade-off between taxonomic breadth (the number of insect groups 
assessed) and taxonomic precision (the taxonomic level at which all 
organisms are classified). To avoid biasing our analysis to those taxa 
in those regions that can reliably be identified to species level, we took 
a two-pronged approach:
(1)	 For studies in which almost all individuals were identified to spe-

cies level (85% of studies), we avoided artificially increasing our 
biodiversity-change metrics owing to a small number of imprecise 
identifications (usually genus or family level). To do this, we devel-
oped a simple algorithm to clean the taxonomy: We probabilistically 
allocated individuals at genus level to one of the observed species 
in the same genus. If no congenerics were present in the time se-
ries, these genera were treated as species. This cleaning was always 
performed just before calculating the biodiversity metrics, also in 
randomization models.

(2)	For studies that were not identified to species level (15% of studies), 
we accepted this taxonomic imprecision, and assumed that the 
data collectors identified all organisms to the best of their abili-
ties. We checked that the taxonomic precision had remained stable 
over time. The use of taxonomic groupings other than species as 
a proxy for diversity changes is justified, because various studies 
have shown that identification to higher taxonomic groupings, 
or morphologically distinct taxa (morphospecies), is generally 
sufficient to detect differences in richness and composition over 
environmental gradients149. Of the 34,317 populations, 84.1% were 
identified to species level, 6.9% to genus, 5.1% to family, 2.7% to 
suborder and less than 1% to higher taxonomic levels.

Statistical analysis
To test for temporal changes in these biodiversity metrics, we used 
autoregressive hierarchical Bayesian models. The fixed model struc-
ture was simple, with the biodiversity metric of choice as the response 
variable, and ‘Year’ as the only fixed independent variable.

By focusing only on the temporal slopes, we could account for the 
different scales of measurement (from one to thousands of individuals, 
and up to hundreds of species per year). The coefficient of the ‘Year’ vari-
able (the temporal slope) can be back-transformed to the percentage  
change per year, and we report both in all graphs.

The response data of all biodiversity models with positive exact, 
estimated or averaged counts (total abundance, species richness, rare-
fied richness, coverage richness, Shannon diversity, inverse Simpson 
diversity and the number of species in each of the SAD quantiles) were 
log10(N + 1)-transformed for analysis, and the error structure was assumed 
to follow a Gaussian distribution. The evenness values were bounded 
between 0 and 1, and the error structure followed a beta distribution.

We accounted for the non-independence of the repeated measure-
ments at each site and the expected autocorrelation among sites part 
of the same study by including a series of nested random intercepts 
and slopes:

We included random intercepts for study; study area (in cases when 
sites were clustered in different study areas of the same study); site (the 
smallest reported sampling unit); and within-year time period (finest 
resolution: month; when samples were collected repeatedly within year, 
nested within study). We included random slopes for the effect of year 
(at the levels of study, study area and site), and for temporal autocorrela-
tion by adding an autoregressive term of order 1 (AR1) (as a continuous 
Ornstein–Uhlenbeck process), on which we placed a random effect at the 
site-level to allow site-level variation in the strength of autocorrelation.

We fitted these models using integrated nested Laplace approxima-
tion (INLA)150 in R4.2.2 (ref. 151), a Bayesian method that efficiently and 
accurately approximates Bayesian posterior distributions, without 
using Markov chain Monte Carlo methods, and which allows for com-
plex layered random effects, including autoregressive terms.

As priors, we used penalized complexity (pc) priors with as hyper- 
parameters a sigma of 3 × s.d. of the data and α = 0.01, meaning that 
there is a probability of 0.01 that the mean lies outside 3 standard devia-
tions of the data.

The prior for the AR1 correlation is defined by INLA on the logit lag 
one correlation scale (where ρ is the correlation coefficient) and was 
given a pc prior with a sigma of 0.5 and an α value of 0.01 (probability 
of 0.01 that the mean is larger or smaller than 0.5).

The general model structure in INLA annotation is:

inla(x ~ Year+
�f(Period, model='iid', hyper = prior.prec))+ # random intercept 
season
�f(Plot_ID, model='iid', hyper = prior.prec))+ # random intercept site
�f(StudyArea_ID, model='iid', hyper = prior.prec))+ # random intercept 
area
�f(Datasource_ID, model='iid', hyper = prior.prec))+ # random intercept 
study
�f(Plot_ID_slope, iYear, model='iid', hyper = prior.prec))+ # random 
slope site
�f(StudyArea_ID_slope, iYear, model='iid', hyper = prior.prec))+# 
random slope area
�f(Datasource_ID_slope, iYear, model='iid', hyper = prior.prec))+# 
random slope study
f(iYear, model='ou', replicate=as.numeric(Plot_ID_4INLA),
�hyper = list(theta1 = list(prior='pc.prec', param=c(0.5, 0.01))))# AR1 
term
family=“gaussian” # normal distribution for the log-transformed 
count data
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where x = log10 (metric + 1) for the univariate metrics, and untrans-
formed beta diversity values for the turnover models.

Models of population change. To estimate the mean population 
trends of all initial abundance intervals, we adjusted model structure 
for the aggregate biodiversity metrics above, by adding an additional 
layer of random intercepts and slopes (for unique species × site combi-
nations), allowing random variation among species. The autoregres-
sive term was retained at the site level, because the population-level 
autoregression required excessive memory use (more than 1 TB) 
and never converged when included at the species × site level. Here, 
we used a Poisson error structure (that is, no log transformation) to 
allow for zero abundances. For the rarefied datasets, we used the 
median value over the 100 iterations for each species. We rounded 
any non-integer species abundances, and removed any species that 
had no non-zero observations left at a site. After modelling, we ad-
justed for RtM effects by adding the expected RtM effect for each 
initial abundance class to the slope estimates and to the estimates 
of the random effects. As expected, the RtM effect was strongest for 
the highest initial abundance intervals (Supplementary Table 5). We 
excluded one dataset (Datasource_ID 1396) because the taxonomy 
was not consistent over time. One model (abundance interval 2 with 
classification based on year 1) failed to converge, possibly owing to 
an excess of zeros, so we ran a simpler model excluding one study 
(Datasource_ID 1560) and removed the random effect on location. 
In a small test, this same simplified model provided similar results 
to those of other models, with a difference in mean slope of 0.00096 
(4% of the 95% CI) and 0.00032 (10% of the 95% CI) for the abundance  
intervals 4 and 5.

Sensitivity analyses. We performed sensitivity analyses on the bio-
diversity metrics to test for the effect of time-series length and the 
number of sites per dataset, as well as the influence of Europe and North 
America, from which most data originated.

To see the effect of time-series length on the mean slope estimates, 
we (1) selected only the sites with at least 20 years between the start and 
the finish of the time series; and (2) used only the last 10 years of each 
time series (discarding all sites for which fewer than 10 years between 
start and end remained). We ran our standard model (above) for the 
variables abundance, richness and Simpson diversity (see Extended 
Data Fig. 2).

For the effect of the number of sites per dataset, we retained only 
the 50, 20 and 10 best sampled (highest number of years data) sites 
per datasets. All other sites were discarded. We repeated our standard 
model (above) for the variables abundance, richness and Simpson 
diversity (see Extended Data Fig. 3).

To test the effect of the well-sampled continents Europe and North 
America, we ran our standard model for the variables abundance, 
richness and Simpson diversity for the data from Europe and North 
America, and for the data excluding these continents. The result of 
this analysis is presented in Extended Data Fig. 8.

Conceptual model. The aim of this simple model was to show pos-
sible changes in biodiversity metrics and population abundances 
under three scenarios: (1) all species decline proportionally to each 
other; (2) abundant species decline more than rare species; and  
(3) rare species decline more than abundant species. To do this, we 
created an idealized SAD of 43 species as starting values for each sce-
nario. We chose abundances such that there would be realistic num-
bers of species in each of five starting SAD intervals (12 singletons, 
10 doubletons and 21 species with higher abundances, with a highest  
abundance of 32).

In scenario 2, the annual decline of each species was proportional 
to its starting abundance N N( =t t

t
=0

1 − 0.018 , where N0 = the number of  
individuals at time 0, and t is the time of measurement). Here, the most 

abundant species declined by around 6% per year, and the rarest spe-
cies did not decline. In scenario 3, the decline of the rarest species was 
around 6% per year and that of the most abundant species 0.76% per 
year: N N N= × (10 + 0.035 × log ( ))t t t

t
=0

−0.027
10 =0 .

We extrapolated these species abundance changes for 20 years, 
added a random error of (μ = 0, σ = 0.5) to the yearly values, and rounded 
them to integers. The error was not intended to be a realistic simulation 
of population dynamics, but rather to add some variation for statisti-
cal model fitting. For visualization, we declared all species with an 
abundance below 0.6 to be extinct (abundance = 0).

We analysed these scenarios using the same approach as for the real 
data. All code is available at https://doi.org/10.5281/zenodo.8369189 
(ref. 31).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All analytical code and data (Supplementary Data 1 and 2) used for 
the analysis are available at Zenodo: https://doi.org/10.5281/zenodo. 
10115304 (ref. 31), and the metadata for these files is available in 
Supplementary Methods 1. The raw data are available at https://doi.
org/10.5063/F1ZC817H (ref. 22) in so far as they are not openly avail-
able elsewhere.
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Extended Data Fig. 1 | Bivariate map of changes in richness and abundance 
at the study level. The trend estimates of the individual studies were derived 
from the random effects of the hierarchical Bayesian model. The colours are 
coded according to the strength of evidence, in which the middle colour in both 

axes indicates that the 80% CI includes zero, hence, all other colours indicate 
weak to strong evidence of a temporal trend on either abundance, richness or 
both. Map derived from refs. 152 and 153.
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Extended Data Fig. 2 | Influence of time-series length on the estimated 
temporal slopes of abundance, richness and Simpson diversity. Long time 
series were selected by restricting the data to sites with at least 20 years from 
the first to the last year. Short time series were created by only retaining the last 

10 years of each site. To aid the comparison among rows, the mean estimates  
of each realm are provided as dotted lines. This shows some shifts in mean 
estimates, but no differences in the qualitative interpretation of the results.



Extended Data Fig. 3 | Influence of studies with a large number of sites  
on the estimated temporal slopes of abundance, richness and Simpson 
diversity. The studies underlying the analysis were subsetted to only the 50, 20 

and 10 best sampled sites, and the models were rerun. To aid comparison 
among rows, the mean estimates of each realm are provided as dotted lines. 
This shows a progressive shift to more positive slopes for all metrics.
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Extended Data Fig. 4 | Explanation of changes in the number of species  
per SAD section. a, The SAD (the number of species per bin), in years 1 and 10 of 
a hypothetical time series. Scaled in relation to the highest observed log10- 
transformed value in the whole time series, we have binned the log10-transformed 

species abundance values in two ways. b,c, We assigned five equally spaced 
sections (b), and four quartiles (c), where the quartiles had approximately equal 
species numbers (variation because of rounding of bins). After the bins were 
assigned, we calculated the number of species falling in each bin in each year.



Extended Data Fig. 5 | Changes in the number of species in each of four 
quartiles on the basis of the distribution of values of all species in each 
whole time series. In comparison to Fig. 4, there are more species and more 
individuals in the higher quartiles, given the naturally low number of very 
abundant species (see Extended Data Fig. 4a,c). Here, there isan equal number 
of observations in each quartile, whereas in Fig. 4, the spacing (in log space) 
between bins is equal.
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Extended Data Fig. 6 | Effects of censoring the first year or first three years 
on the slope estimates for correcting RtM effects. We calculated the slope 
estimate (±80, 90 and 95% CI) on the highest quality datasets (260 plots in 26 
datasets with at least 15 years of data) for each of the initial abundance groups 
with no censoring (all data included), excluding the first year, and excluding the 
first three years. The shrinkage towards zero of the estimates with increasing 
censoring is assumed to be caused by RtM effects, but we cannot exclude that it’s 

partially due to true greater declines of populations during the early years of 
monitoring. We have taken the difference between the mean slope estimate 
without censoring and the estimate with one-year censoring from the start as the 
correction factor for RtM effects in the main text (see Supplementary Table 5). 
Three-year censoring would provide a larger correction factor (Supplementary 
Table 5).



Extended Data Fig. 7 | Effects of different ways of classifying locally rare 
and abundant species on the estimated mean population trends. 
Classification of species starting interval was done based on (i) the abundances 
observed in year 1, (ii) the abundance of each species averaged over years 1  
and 2 (iii) the abundance of each species averaged over years 1-5, and (iv) the 
abundance of each species averaged across the whole time series. Species  
that were absent at the start of the time series were not analysed, because their 

abundance trends will be, on average, positive by definition. The weakest 
results when based on the whole time series was expected because this is the 
most conservative approach to assessing rarity. An initially abundant species 
with a strong decline might not be abundant across the whole time series. 
Hence, this analysis shows that even when looking at abundance across the 
whole time series, the most abundant species decline most strongly.
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Extended Data Fig. 8 | Relation between abundance slopes and the mean 
population slopes at the dataset level. Abundance slopes and mean 
population slopes at the dataset level were both converted to the percentage 
change per year per initial abundance interval. The initial abundance intervals 
can be understood as the abundance interval of a species in relation to the 

log-transformed abundance of the most abundant species in year 1. Dotted 
lines represent the 1:1 relation, orange lines and slope estimates (β) represent 
the best fit according to least squares regression models. We removed one data 
point with an extreme slope from panels 1 and 2 to aid visual interpretation.



Extended Data Fig. 9 | Temporal trend slopes for biodiversity metrics 
excluding Europe and North America. The probability densities are shown 
for the slope estimates of abundance, species richness and Simpson diversity 

(ENS) for the data excluding Europe and North America. Numbers indicate  
the number of studies and the number of sites underlying each estimate 
respectively.
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