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Machine intelligence-accelerated discovery 
of all-natural plastic substitutes

Tianle Chen    1,7, Zhenqian Pang2,7, Shuaiming He1,7, Yang Li1, Snehi Shrestha1, 
Joshua M. Little    1, Haochen Yang    1, Tsai-Chun Chung1, Jiayue Sun3, 
Hayden Christopher Whitley    1, I-Chi Lee4, Taylor J. Woehl1,3, Teng Li    2 , 
Liangbing Hu    5  & Po-Yen Chen    1,6 

One possible solution against the accumulation of petrochemical plastics in 
natural environments is to develop biodegradable plastic substitutes using 
natural components. However, discovering all-natural alternatives that 
meet specific properties, such as optical transparency, fire retardancy and 
mechanical resilience, which have made petrochemical plastics successful, 
remains challenging. Current approaches still rely on iterative optimization 
experiments. Here we show an integrated workflow that combines robotics and 
machine learning to accelerate the discovery of all-natural plastic substitutes 
with programmable optical, thermal and mechanical properties. First, an 
automated pipetting robot is commanded to prepare 286 nanocomposite 
films with various properties to train a support-vector machine classifier. 
Next, through 14 active learning loops with data augmentation, 135 all-natural 
nanocomposites are fabricated stagewise, establishing an artificial neural 
network prediction model. We demonstrate that the prediction model can 
conduct a two-way design task: (1) predicting the physicochemical properties 
of an all-natural nanocomposite from its composition and (2) automating 
the inverse design of biodegradable plastic substitutes that fulfils various 
user-specific requirements. By harnessing the model’s prediction capabilities, 
we prepare several all-natural substitutes, that could replace non-biodegradable 
counterparts as exhibiting analogous properties. Our methodology integrates 
robot-assisted experiments, machine intelligence and simulation tools to 
accelerate the discovery and design of eco-friendly plastic substitutes starting 
from building blocks taken from the generally-recognized-as-safe database.

Petrochemical plastics are lightweight, durable and inexpensive, ena-
bling almost ubiquitous applications1. However, less than 10% of petro-
chemical plastics can be recycled, and nearly 80% of used plastics end 
up in landfills or pollute the environment, resulting in global plastic 

pollution2. One promising solution is to use natural components to 
develop sustainable, biodegradable plastic substitutes, which can atten-
uate the magnitude of plastic waste and prevent the release of micro-
plastics3. However, discovering biodegradable alternatives that meet 
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glycerol mixtures followed by overnight evaporation, the all-natural 
nanocomposite films were obtained (scanning electron microscopy 
(SEM) images in Supplementary Fig. 4). As shown in Supplementary 
Fig. 5, by adjusting the MMT/CNF/gelatin/glycerol ratios, the physico-
chemical properties of nanocomposite films varied in a non-linear and 
hard-to-predict manner. Supplementary Note 2 estimates that >23,000 
nanocomposite films are required to build an extensive database for 
four components (each with a step size of 2.0 wt.%). However, conduct-
ing a such large number of experiments is impractical due to finite 
resources and time constraints. Therefore, a robotics/ML-integrated 
workflow was implemented to discover suitable biodegradable nano-
composites for diverse plastic replacements.

Design space definition
To construct a high-accuracy prediction model, we developed an AI/ML 
framework with three critical steps, including (1) boundary definition, 
(2) active learning and (3) in silico data augmentation. The first step 
was to define the boundaries of a feasible design space, during which 
an OT-2 robot was commanded to prepare a library of MMT/CNF/gela-
tin/glycerol mixtures with varying ratios (Fig. 2a). As demonstrated in  
Supplementary Movie 1, the OT-2 robot was able to prepare 286 mix-
tures within 6 h (four components, with a step size of 10 wt.%). Then, the 
robot-prepared solutions were cast onto planar polystyrene substrates 
and left to evaporate overnight. Afterward, based on the detachability 
and flatness of nanocomposite films (Methods), 286 samples were 
categorized into four cases (inset of Fig. 2b), ranging from (1) detach-
able and flat ones (A grade) to (2) detachable yet curved ones (B grade),  
(3) detachable yet fractured ones (C grade) and (4) non-detachable 
ones (D grade). As shown in Supplementary Tables 1 and 2, there were 
132 A grades, 36 B grades, 46 C grades and 72 D grades; multiple blind 
tests were performed by several researchers. Supplementary Note 3 and 
Supplementary Fig. 6 discuss the influence of evaporation substrates 
on the grades of nanocomposite films.

The discrete grades were input to train a SVM classifier to locate 
the maximal-margin hyperplanes between the data points with dif-
ferent grades (see Supplementary Note 4 for detailed description)20.  
The trained SVM classifier suggested a specific MMT/CNF/gelatin/glyc-
erol ratio that led to an A-grade nanocomposite film at a high successful 
rate >94% (examined by a set of testing data points, Supplementary 
Table 3). As shown in Fig. 2b, by predicting the A-grade possibilities 
across the design space, a three-dimensional (3D) heatmap was pro-
duced. By setting the possibility threshold of getting A-grade nano-
composites to be 75%, a 3D, irregular feasible design space was defined 
and held ~48% of the entire design space (Supplementary Fig. 7).  
Supplementary Note 5 describes the necessity of each AI/ML unit.

Model construction
As illustrated in Fig. 2c, the active learning loops were initiated by com-
manding the OT-2 robot to prepare ten mixtures with random ratios. 
After overnight drying, ten nanocomposite films were obtained, and 
their MMT/CNF/gelatin/glycerol ratios were recorded as the ‘composi-
tion’ labels. Afterward, each nanocomposite film underwent optical, 
fire-resistant and mechanical characterizations.

First, the transmittance spectrum of each nanocomposite film 
was characterized, and the transmittance values at 365, 550 and 950 nm 
were extracted as the ‘spectral’ labels (TUV, TVis and TIR), respectively. 
Second, the fire resistance of each nanocomposite film was examined 
through a modified ASTM D6413 fire test, and the residual ratio (RR, 
defined in equation (1)) was recorded as the ‘fire’ label,

RR = A′/A, (1)

where A and A′ are the sample dimensions before and after the  
fire test, respectively. Third, the stress–strain curve of each nano-
composite film was characterized by performing a tensile test. Several 

specific property criteria, such as optical transparency, fire retardancy 
and mechanical resilience, presents substantial challenges. Current 
approaches rely on trial-and-error experiments and probe a broad range 
of parameters in a scattershot manner4,5. As more plastics are needed to 
be replaced, the time and cost required to find suitable biodegradable 
substitutes will increase. Additionally, biodegradable plastic substitutes 
typically contain multiple natural building blocks, and conventional 
simulation tools are not efficient to describe such complex systems. 
Instead, it is highly desirable to have a prediction model that can opti-
mize multiple physicochemical properties of a biodegradable plastic 
substitute and automatically suggest ideal fabrication parameters6,7, 
largely accelerating the research and development processes.

Machine learning (ML) is a form of artificial intelligence (AI) 
that constructs a model to make predictions or recommendations 
across multiple degrees of freedom8,9. Recently, AI/ML have benefit-
ted the fields of organic/inorganic catalyst design10,11, drug discov-
ery12,13 and quantum dot synthesis14,15, in which simulation tools or 
high-throughput analytical platforms can supply many high-quality 
data points. In contrast, substantial obstacles exist in constructing a 
high-accuracy prediction model for biodegradable plastic substitutes, 
as the acquisition of high-quality data points is time-consuming and 
labour intensive16,17. Also, because every lab selects different natural 
components and follows individual protocols, data points from the lit-
erature are inconsistent, thus making AI/ML predictions unreliable18,19. 
Moreover, recent reports on all-natural plastic substitutes focused on 
optimizing a single characteristic (for example, optical transparency 
or mechanical strength), so the development of an AI/ML model that 
can predict multiple properties is still limited.

In this Article, an integrated workflow that uses robotics and AI/
ML predictions was realized to accelerate the discovery of all-natural 
plastic substitutes with programmable optical, thermal and mechanical 
properties (Fig. 1a). Four generally-recognized-as-safe (GRAS) natural 
components, including cellulose nanofibres (CNFs), montmorillonite 
(MMT) nanosheets, gelatin and glycerol, were selected as the building 
blocks to fabricate various all-natural plastic substitutes (see Supple-
mentary Note 1 and Supplementary Fig. 1 for the selection rationale). An 
automated pipetting robot (that is, OT-2 robot) was first commanded to 
prepare 286 nanocomposites with varying CNF/MMT/gelatin/glycerol 
ratios, and the film qualities were evaluated to train a support-vector 
machine (SVM) classifier. Next, through 14 active learning loops with 
data augmentation, 135 all-natural nanocomposites were stagewise 
fabricated, enabling the construction of an artificial neural network 
(ANN) model with high prediction accuracy across the entire design 
space. By harnessing the model’s predictive power, two-way design 
tasks were demonstrated, including (1) accurately predicting multiple 
characteristics of an all-natural nanocomposites from its composition 
and (2) automatically suggesting suitable biodegradable plastic alter-
natives with user-designated features. As shown in Fig. 1b, by inputting 
specific property criteria, the prediction model discovered suitable 
all-natural substitutes for diverse plastic replacements, without the 
need of iterative optimization experiments. Several data-scientific 
insights were generalized by SHapley Additive exPlanations (SHAP) 
model interpretation and validated by molecular dynamics (MD)  
simulations. Furthermore, through strategic selections of building 
blocks combined with a model expansion method, the prediction 
model continually expanded its design space and broadened the range 
of achievable functions. Our hybrid approach, involving robot-assisted 
experiments, data science and simulation tools, offers an unconven-
tional design platform to accelerate the invention of eco-friendly, 
biodegradable plastic substitutes from the GRAS database.

Composition-dependent physicochemical 
properties of the nanocomposite films
The characterizations of the four building blocks are provided in  
Supplementary Figs. 2 and 3. By casting the MMT/CNF/gelatin/
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mathematic equations were tested to fit the stress–strain curves, and 
the cubic Bézier equation was finally selected due to the highest coef-
ficient of determination (R2 = 0.995, Supplementary Fig. 8). Five cubic 
Bézier parameters, including ultimate tensile strength (σu), fracture 
strain (εf), Young’s modulus (E) and two shape parameters (α and β), 
were extracted as the ‘mechanical’ labels. In short, one nanocomposite 
film produced one data point containing four ‘composition’, three 
‘spectral’, one ‘fire’ and five ‘mechanical’ labels. In the initial round, ten 
data points were collected.

To improve model’s learning efficiency and address overfitting, 
a data augmentation method, user input principle, was introduced to 
synthesize virtual data points (see Supplementary Figs. 9 and 10, and 
Supplementary Note 6 for detailed description). Both virtual and real 
data points were used as the training data for an ANN model through 
fivefold cross-validation21. Then, the ANN model evaluated the unfamili-
arity level of targeted data points on the basis of a hybrid acquisition 
function (so-called A score in equation (2))22,

Ascore = ̂L × σ̂, (2)

where ̂L  denotes the Euclidean distance between in-model and 
model-targeted ‘composition’ labels, and σ̂  denotes the prediction 

variance of the ANN committee (see detailed discussion in Supplemen-
tary Note 7). For the next active learning loop, the data points with the 
highest A scores in the feasible design space were selected.

Afterward, the OT-2 robot was re-activated and followed  
the model-suggested ‘composition’ labels to prepare a new set of  
MMT/CNF/gelatin/glycerol mixtures. After cast drying, each nanocom-
posite film underwent similar spectral, fire and mechanical charac-
terizations, and the user input principle method was again applied to 
synthesize virtual data points. With the updated dataset, the prediction 
model was re-trained and suggested another set of targeted data points 
with the highest A scores for the next loop. A total of 14 active learning 
loops were conducted, and 135 all-natural nanocomposite films were 
stagewise fabricated (Supplementary Table 4), resulting in ~140,000 
real and virtual data points.

To visualize how data points were collected and distributed during 
active learning loops, 3D diagrams of Voronoi tessellation were 
adopted. As shown in Fig. 2d and Supplementary Figs. 11 and 12, the 
average cell volumes and their volume variances decreased as the loop 
number increased, implying that the AI/ML framework suggested the 
data points in different subregions without forming uninformative 
data clusters. Next, the accuracy of multi-property prediction was 
evaluated using a set of testing data points (that were never input to 
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Fig. 1 | Machine intelligence-accelerated discovery of all-natural plastic 
substitutes with programmable properties. a, An integrated workflow using 
robotics and AI/ML predictions is demonstrated to construct a high-accuracy 
prediction model, enabling the accelerated discovery of all-natural plastic 
substitutes. Inset photo shows a model-suggested all-natural substitute 
that can be fabricated in a large area (with the dimensions of 53 cm × 38 cm). 
b, By inputting various property criteria for specific plastic products, the 

prediction model can automate the inverse design of all-natural substitutes 
to replace transparent badge holders, clear file folders, transparent shopping 
bags, translucent lamp shades, transparent air pillows, non-flammable 
battery packages and UV-blocking chemical packages. Top row photos show 
non-biodegradable plastic products and their property criteria. Bottom row 
photos show the biodegradable, all-natural substitutes suggested by the 
prediction model.
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ANN, Supplementary Table 5). By inputting the ‘composition’ values 
of testing data points, the prediction model output the ‘optical’, ‘fire’ 
and ‘mechanical’ labels, which were compared with the actual values 
of testing data points. The deviation between model-predicted prop-
erty labels and actual property values was quantified using a mean 
relative error (MRE, see Methods for details). A smaller MRE value 
indicates higher prediction accuracy and vice versa. As demonstrated 
in Fig. 2e, after 14 active learning loops, the MRE decreased to around 
17%, which was close to some measurement variations (~12% in the TUV 
label and ~15% in the εf  label). Among other prediction models, the ANN 
model demonstrated the lowest MREs and the highest accuracy of 
multi-property prediction. Supplementary Figs. 13 and 14, Supplemen-
tary Table 6 and Supplementary Note 8 compare the active learning 
sampling with other sampling methods.

Figure 2f shows that the ANN model without data augmentation 
presented a high MRE of >55% after 14 active learning loops, mainly due 
to a small amount of training data points that caused model overfitting. 
In this work, the optimal virtual-and-real data ratio was determined 
to be 1,000, which maximized the learning efficiency while keeping a 

short loop time. Supplementary Note 9 provides the estimated time 
for all fabrication and characterization steps in one active learning 
loop. On average, completing one loop took approximately 2.5 days. 
When the virtual-and-real data ratio further increased to 5,000 and 
10,000, the model training and optimization for one loop took over 4 
and 7 days, respectively. Finally, the ANN model with the lowest MRE 
of 17% was selected as ‘the champion model’.

Property prediction of the nanocomposites
As shown in Fig. 3a–c and Supplementary Table 7, the champion model 
accurately predicted the optical transmittances, fire resistances and 
stress–strain curves of multiple all-natural nanocomposites, which 
well matched the experimental results. By inputting all possible com-
positions within the feasible design space, the champion model pro-
duced a set of 3D heatmaps that visually represented the spatial 
distributions of all property labels, including thickness (Supplementary 
Fig. 15), TVis (Fig. 3d and Supplementary Fig. 17c), TUV (Supplementary 
Figs. 16a and 17d), TIR (Supplementary Figs. 16b and 17e), RR  (Fig. 3e 
and Supplementary Fig. 17f), σu (Fig. 3f and Supplementary 17g), εf  
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Fig. 2 | Construction of a high-accuracy prediction model via active 
learning loops, in silico data augmentation and robot–human teaming. 
a, An automated pipetting robot (that is, OT-2 robot) capable of preparing 
various MMT/CNF/gelatin/glycerol mixtures. b, Left: 286 discrete grades of 
nanocomposite films with varying MMT/CNF/gelatin/glycerol ratios. Inset: 
photos of nanocomposite films with four different grades. Right: a 3D heatmap 
representing the possibility of obtaining an A-grade nanocomposite film at 

a specific MMT/CNF/gelatin/glycerol ratio. c, Construction of an ANN-based 
prediction model via active learning loops, data augmentation and robot–human 
teaming. d, 3D diagram of Voronoi tessellation after 14 active learning loops. e, 
MRE values of different prediction models based on linear regression, decision 
tree, gradient-boosted decision tree, random forest and ANN algorithms. f, MRE 
values of different prediction models based on various virtual-to-real data ratios.
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(Supplementary Figs. 16c and 17h) and E  (Supplementary Figs. 16d and 
17i). Figure 3g and Supplementary Fig. 18 show that, through adjusting 
the MMT/CNF/gelatin/glycerol ratios, the optical, thermal and mechan-
ical properties of all-natural nanocomposites were highly tunable 
across wide ranges.

With high prediction accuracy, the champion model was adopted 
to accelerate the discovery of high-strength structural materials using 
natural building blocks23,24. Through clustering analyses (see Supple-
mentary Note 10 and Supplementary Table 8), the champion model 
suggested two suitable compositions: one with a high MMT loading 
(MMT/CNF/gelatin/glycerol = 64.2/6.7/23.8/5.3), and the other with a 
high CNF loading (3.7/61.8/28.4/6.1). By following two model-suggested 
compositions, we successfully fabricated the MMT-rich and CNF-rich 
nanocomposites, with their average σu values of 114 ± 18 and 98 ± 7 MPa 
(from 5 replicates), respectively (see Supplementary Fig. 19 for detailed 

description). To further strengthen the MMT-rich and CNF-rich nano-
composites, two-step treatments (including Ca2+ crosslinking and heat 
pressing) were conducted (Supplementary Figs. 20 and 21, and  
Supplementary Note 11), and the average σu values were improved to 
468.6 ± 52.6 MPa (Supplementary Fig. 20a, with the highest σu of 
520.7 MPa,) and 463.0 ± 35.7 MPa (Supplementary Fig. 20b, with the 
highest σu of 521.0 MPa).

Model expansion method to incorporate new 
building blocks
To further enrich the portfolio of all-natural plastic substitutes, a 
model expansion method was applied to incorporate chitosan as the 
fifth building block, due to its excellent properties of antimicrobial 
activity and biocompatibility25,26. As depicted in Fig. 3g, the prediction 
model guided three additional active learning loops to integrate the 

a b c

d e f

300 500 700 900 1,100
0

20

40

60

80

100

Tr
an

sm
itt

an
ce

 (%
)

Wavelength (nm)

Experimental results Model prediction
Composition 1 

Composition 2

Composition 3
0

0.2

0.4

0.6

0.8

1.0
Experimental results

Re
si

du
al

 ra
tio

 (–
)

Model prediction

Composition
6

Composition
5

Composition
4

0 2 4 6
0

15

30

45

60

75

St
re

ss
 (M

Pa
)

Strain (%)

Experimental results Model prediction
Composition 7
Composition 8
Composition 9
Composition 10     
Composition 11     

g h

100

125

150

10 40 70 100 130 160

Number of data (–)

20

40

M
RE

 (%
)

Before model expansion
(without chitosan incorporation)

After model expansion
(with chitosan incorporation)

1

0.5

G
ly

ce
ro

l

T
Vis  (%

)

T V
is
 (%

)

σ
u  (M

Pa)

σ u
 (M

Pa
)

ε f
 (%

)

E 
(G

Pa
)

0
0

0.5
CNF

MMT
0.5

0

100

75

50

25

0

RR (–)
1.00 120

90

60

30

0

0.75

0.50

0.25

0

1 1

1

0.5

G
ly

ce
ro

l

0

1

0.5

G
ly

ce
ro

l

00

80

120 45

8

4

0

With
out

chito
sa

n With

chito
sa

n
With

out

chito
sa

n With

chito
sa

n
With

out

chito
sa

n With

chito
sa

n
With

out

chito
sa

n With

chito
sa

n

30

15

0

80

40

0

40

0

0.5
CNF

MMT
0.5

0

1 1

0

0.5
CNF

MMT
0.5

0

1 1

Fig. 3 | Accurate prediction of optical, flammable and mechanical properties 
via a champion model. a–c, Comparison between actual optical transmittance 
spectra and model-predicted spectral labels of three all-natural nanocomposites 
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all-natural nanocomposites (compositions 4–6) (b), and actual stress–strain 
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(d), RR (e) and σu (f) labels within the feasible design space. g, MRE values of the 
champion model during the model expansion process to incorporate chitosan 
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new degree of freedom (that is, chitosan loading) into the champion 
model. Throughout the model expansion phase, 133 experiments were 
conducted: 90 to refine the SVM classifier (Supplementary Table 9) 
and 43 to retrain the champion model (Supplementary Table 10). This 
model expansion phase spanned ~13 days. As shown in Fig. 3g, the pre-
diction model maintained high predictive accuracy after three loops, 
and the MREs decreased from 107% to 21%. As highlighted in Fig. 3h, 
the incorporation of chitosan notably elevated the ultimate strains of 
all-natural substitutes from 15% (without chitosan) to 34% (with chi-
tosan). By utilizing the expanded model, we produced two additional 
all-natural plastic substitutes with high strains for clear file folders and 
transparent air pillows in Fig. 1b and Supplementary Table 11. Further 
discussion is detailed in Supplementary Note 12.

Inverse design of all-natural substitutes for 
diverse plastic replacement
Figure 4a shows the Ashby diagram that displays σu and E  of various 
engineered polymers (including plastics) and our all-natural substi-
tutes27. Using AI/ML predictions, a library of all-natural substitutes was 
developed to satisfy the mechanical design region within 1 < σu < 120 MPa 
and 0.5 < E  < 9.9 GPa. After the two-step treatments, these 
model-suggested substitutes were densified, and the design region was 

extended into the ranges of 278 < σu < 521 MPa and 17.5 < E  < 71.7 GPa. 
Compared with the reported works in the literature (Fig. 4b and Sup-
plementary Table 12)28–43, our robotics/ML integrated approach discov-
ered a set of >150 all-natural substitutes that covered the entire 
subregion(s) of the Ashby diagram, enabling a wide range of plastic 
replacement. In Fig. 4b and Supplementary Fig. 22, the dot colours rep-
resent the TVis and RR values of each all-natural substitute, respectively.

To demonstrate the power of multi-property prediction, the cham-
pion model was employed to automate the inverse design of all-natural 
plastic substitutes with programmable physicochemical characteris-
tics. As shown in Fig. 1b and Supplementary Table 11, multiple plastic 
products were targeted to be replaced, and every model-recommended 
all-natural plastic substitute exhibited optical transparency, fire retar-
dancy and mechanical resilience in line with the diverse design criteria. 
By following the model-suggested compositions, various all-natural 
substitutes were produced in large areas (with the dimensions of 
53 cm × 38 cm, inset of Fig. 1a and Supplementary Fig. 23a,b). It is worth 
noting that these all-natural plastic alternatives demonstrated long shelf 
lives at least over 6 months (as shown in Supplementary Fig. 23c,d).

To examine the biodegradability of all-natural substitutes, two 
all-natural substitutes were buried in soil, along with polystyrene 
and polyethylene films as the controls (Fig. 4c). After 5 weeks, both 
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Fig. 4 | AI/ML-accelerated inverse design of all-natural nanocomposites for 
diverse plastic replacement with model interpretation. a, Ashby diagram 
(ultimate strength (σu) versus Young’s modulus (E)) for engineered polymers and 
model-predicted all-natural nanocomposites27. The champion model was able to 
suggest a library of all-natural nanocomposites with programmable σu and E  
values, which well matched the mechanical properties of phenolic, poly(methyl 
methacrylate) (PMMA), polystyrene (PS), polyvinyl chloride (PVC), 
polycarbonate (PC), polyamide (PA), polyurethane and polypropylene (PP). b, 
σu versus E  plot of >200 all-natural nanocomposites fabricated during active 
learning loops, model expansion, and after two-step treatments, and the dot 

colour represents the TVis label of each nanocomposite. Compared to the 
state-of-the-art works using repetitive design of experiments to discover the 
biodegradable plastic substitutes (scattered in the Ashby diagram), our AI/ML 
prediction approach was able to discover a library of all-natural plastic 
substitutes across the entire subregion. c, Biodegradability tests of two 
commercial plastic films (polypropylene and PS) and two all-natural substitutes 
buried in soils for 5 weeks. The MMT/CNF/gelatin/glycerol ratio of all-natural 
substitute #1 was 60.0/3.0/24.0/13.0; the MMT/CNF/gelatin/glycerol ratio of 
all-natural substitute #2 was 6.0/36.0/1.0/57.0. d–f, Normalized SHAP values of 
MMT, CNF, gelatin and glycerol loadings on TVis (d), RR (e) and σu (f).
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all-natural substitutes were completely decomposed, while the pet-
rochemical plastics remained intact. Supplementary Fig. 24 further 
demonstrates that all-natural plastic substitutes lost >60% of their 
original weights after 2 weeks. The good biocompatibility of all-natural 
plastic substitutes was validated through multiple cytotoxicity experi-
ments on L929 cells (Supplementary Fig. 25 and Supplementary Note 
13). As shown in Supplementary Fig. 26, the properties of all-natural 
plastic substitutes remained stable under direct sunlight after 8 days. 
Supplementary Fig. 27 and Supplementary Note 14 further discuss 
the construction of a SVM classifier to design the all-natural plastic 
substitutes with different water stability levels.

Model interpretation and composition–property 
correlations
To uncover complex composition–property correlations and improve 
model’s interpretability, Spearman’s rank correlation coefficients (see 

Supplementary Fig. 28 and Supplementary Note 15 for details) and 
SHAP model interpretation were implemented on over 150 data col-
lected during active learning loops. SHAP is a game theoretic approach 
to explain the output of any AI/ML model44. A positive SHAP value refers 
to a positive correlation, and vice versa (see detailed description in 
Supplementary Fig. 29 and Supplementary Note 16). Taking TVis as an 
example (Fig. 4d), the SHAP values of MMT and CNF loadings fluctuated 
from −0.9 to +0.4 and from −1.0 to +0.5, respectively, indicating that 
both components were equally influential yet had the opposite effects 
on TVis. In contrast, the gelatin and glycerol loadings were less impact-
ful on TVis, as their SHAP values were distributed in narrower ranges.  
A similar SHAP analysis was conducted on RR (Fig. 4e), where the MMT 
loading had a strong, positive impact. As shown in Fig. 4f, the SHAP 
values of MMT and CNF loadings on σu were both distributed from −0.6 
to +0.8, suggesting that these two components might have synergistic 
strengthening effects at molecular scale, which was investigated 
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Fig. 5 | MD simulations reveal the deformation and failure mechanisms at 
the molecular scale. a–c, Atomic structures of CNF only (a), MMT only (b) and 
MMT/CNF (c) models before and after tensile failure. Insets are the SEM images 
of the fracture surfaces of CNF only, MMT only and MMT/CNF thin films. d, 
Simulated stress–strain curves of CNF only, MMT only and MMT/CNF models. 
e, Comparison of ultimate strengths and Young’s moduli extracted from MD-

simulated and experimental results. f, Variation of hydrogen-bond energy in the 
MMT/CNF model as a function of tensile strain, showing three stages, namely 
initial decreasing stage (shaded in green), fluctuation stage (shaded in blue) and 
final decreasing stage (shaded in yellow). g, Normalized SHAP values of MMT 
loading, CNF loading, gelatin loading, glycerol loading, gelatin source and MMT 
size on TVis, RR and σu.
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through MD simulations next. Additional SHAP analyses on TUV, TIR, εf  
and E  are shown in Supplementary Fig. 30, and Supplementary Table 
13 summarizes the impactful component(s) on each property label.

MD simulations for investigating strengthening 
mechanisms
To investigate the strengthening mechanism between CNF chains and 
MMT nanosheets, we performed MD simulations on three models under 
tension: CNF only, MMT only, and MMT/CNF models (Methods). The 
atomic structures of these models are shown in Fig. 5a–c, and their tensile 
failure processes are recorded in Supplementary Movies 2–4, respec-
tively. Supplementary Fig. 31 shows alternative presentations of these 
models using different colours to represent various atoms. As shown in 
Fig. 5a and Supplementary Movie 2, the CNF only model exhibited chain 
sliding behaviours, which led to crack formation/propagation and even-
tually caused tensile failure45. As shown in Fig. 5d, the stress–strain curve 
of the CNF only model featured a zigzag profile, corresponding to the 
cascade events of hydrogen-bond formation, breaking and reformation 
between neighbouring cellulose chains. On the other hand, the MMT 
only model was more brittle and developed inter-particle fractures upon 
tension, as shown in Fig. 5b and Supplementary Movie 3. As shown in 
Fig. 5d, the stress–strain curve of the MMT only model was quasi-linear 
and had an abrupt stress drop upon tensile failure.

In the MMT/CNF model, the tensile failure mechanism was dis-
tinct from the CNF only and MMT only models. As shown in Fig. 5c 
and Supplementary Movie 4, cracks initially developed between 
neighbouring MMT particles upon tension. Through these open 
cracks, the cellulose chains underwent localized tensile deforma-
tion, further propagating the cracks towards tensile failure of the 
MMT/CNF model. As the MMT/CNF interfaces exhibited high binding 
energy, the cracks upon tension propagated only in the perpendicular 
direction (in the y direction), and the MMT/CNF model involved a 
certain amount of CNF fractures upon tension, thus demonstrating 
a higher tensile strength (Fig. 5d).

To validate the MD simulation results, we fabricated three thin-film 
samples through vacuum filtration: one MMT only, one CNF only, and 
one from a 1:1 MMT/CNF mixture. As insets shown in Fig. 5a–c, the ten-
sile fracture surfaces of these samples were observed under SEM. For 
example, the MMT only film displayed a sharp and clear-cut fracture 
surface, whereas the CNF only film showcased that fibres were pulled 
out at the points of rupture. In contrast, the MMT/CNF film revealed 
rough, rugged fracture surfaces, featuring multiple MMT/CNF subcom-
ponents that had intertwined due to tension. Supplementary Fig. 32 
shows the stress–strain curves of the MMT only, CNF only and MMT/
CNF thin-film samples. As summarized in Fig. 5e, both MD simulations 
and experimental results show similar trends in ultimate strengths and 
Young’s moduli (MMT/CNF > CNF only > MMT only). Supplementary 
Note 17 further details the comparison between CNF only and MMT 
only models.

Figure 5f plots the variation of hydrogen-bond energy in the MMT/
CNF model as a function of tensile strains. At the initial decreasing stage 
(shaded in green), the curvy cellulose chains are first straightened, 
and the intrachain hydrogen bonds (between repeating unit of indi-
vidual cellulose chains) are gradually broken. As the fluctuation stage 
(shaded in blue), the elongation of cellulose chains is associated with 
many breaking and reforming events of interchain hydrogen bonds. 
At the final decreasing stage (shaded in yellow), an abrupt drop of 
hydrogen-bond energy corresponds to the breaking of many hydrogen 
bonds during the crack propagation process.

Sensitivity analyses on structural and physical 
attributes of building blocks
To understand the influences of both structural and physical attributes 
of building blocks on the end-product properties, several sensitivity 
analyses and MD simulations were implemented in Supplementary 

Figs. S33–35 and Supplementary Note 18. As shown in Supplementary 
Fig. 36, 24 different MMT/CNF/gelatin/glycerol ratios were selected, 
and 6 sets of all-natural nanocomposites were prepared using three 
different gelatin sources (cold fish skin, porcine skin and bovine skin) 
and three different MMT sizes (large-, medium- and small-sized 
nanosheets). Subsequently, the optical, fire-resistant and mechanical 
properties of 144 all-natural nanocomposites were evaluated and fed 
into the prediction model. Next, SHAP analyses were used to determine 
the influences of different gelatin sources and MMT sizes on all nine 
property labels (Fig. 5g and Supplementary Fig. 37). The SHAP analyses 
suggested that both gelatin source and MMT size had considerable 
impacts on the optical properties (TIR, TVis and TUV), while their influ-
ences on the fire-resistant and mechanical properties (RR, σu, εf  and 
E) were limited.

Conclusions
In conclusion, an unconventional design platform that utilized 
automated robots, machine intelligence, wet-lab experiments and 
simulation tools was developed to discover a library of all-natural 
nanocomposites as biodegradable plastic substitutes with program-
mable optical, fire-resistant and mechanical properties. Furthermore, 
compared to the state-of-the-art works in Supplementary Table 1446–48, 
this ML/robotics-integrated workflow stimulates the development of 
various functional materials with multi-property optimization, which 
can be applied to a wide range of nanoscience fields, including tactile 
sensors49,50, stretchable conductors51,52, electrochemical electrolyte 
optimization53,54 and thermal insulative aerogels55,56.

Still, there exist several ongoing challenges and limitations associ-
ated with the AI/ML-integrated workflow for the accelerated design of 
all-natural plastic substitutes. First, no available collaborative robotics 
systems can automate the entire preparation and characterization pro-
cesses for all-natural nanocomposites. Therefore, manual operations 
are still required to connect each stage for sample preparation and/or 
characterization. When more building blocks and structural/chemical 
features are included, the time and manpower needed for construct-
ing an accurate AI/ML model will be inflated without robot-automated 
experimentation. Second, the quality of natural building blocks may 
vary from batch to batch. Therefore, stringent quality controls for 
each building block are crucial, especially for large-scale production 
and manufacturing. Third, data fusion with cost analyses and life cycle 
analyses into the champion model would be highly beneficial, allowing 
for identifying the optimal all-natural plastic substitutes that meet 
desired properties as well as provide the benefits of cost saving and 
environmental impact reduction. Last, the end-of-life processing of 
all-natural plastic substitutes has not been considered, which could 
be converted into biofuels or other valuable chemicals.
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Methods
Materials
MMT (BYK Additives Incorporation; Cloisite Na+), northern bleached 
softwood kraft (NBSK) pulp (NIST RM 8495), TEMPO (Sigma-Aldrich, 
99%), sodium bromide (NaBr, Sigma-Aldrich, ACS reagent, ≥99.0%), 
sodium hypochlorite solution (NaClO, Sigma-Aldrich, reagent grade, 
available chlorine 10–15%), sodium hydroxide (NaOH, Sigma-Aldrich, 
reagent grade, ≥98%), gelatin (Sigma-Aldrich, from cold-water fish 
skin) and glycerol (Sigma-Aldrich, ACS reagent, ≥99.5%) were used as 
received without further purification. Deionized (DI) water (18.2 MΩ) 
was obtained from a Milli-Q water purification system (Millipore) and 
used as the water source throughout this work.

Preparation of MMT nanosheet dispersion
The MMT nanosheet dispersion was prepared according to the litera-
ture57. To obtain medium-sized MMT nanosheets, MMT powders were 
mixed in DI water at 10 mg ml−1, and the mixture was ultrasonicated for 
2 h and continuously stirred for another 12 h. Afterward, the mixture 
was centrifuged at 1,252g for 60 min, and the supernatant was then 
collected as the dispersion of MMT nanosheets with the concentration 
about 8 mg ml−1. To obtain small-sized MMT nanosheets, the ultrasoni-
cation time was extended to 3 h, and the mixture was centrifuged at 
5,009g for 60 min. Conversely, for large-sized MMT nanosheets, the 
ultrasonication time was reduced to 1 h, and the mixture was centri-
fuged at a slower speed of 489g for 15 min.

Preparation of CNF dispersion
The CNF dispersion was prepared according to the literature58. First, 
20 g of NBSK pulp was suspended in 1.0 litre of DI water, and then 
TEMPO (2 × 10−3 mol) and NaBr (0.02 mol) were added into the pulp. The 
TEMPO-mediated oxidation was initiated by adding 0.2 mol of NaClO, 
and the oxidation process was maintained under continuous stirring 
for 5–6 h, during which the pH was controlled at 10.0 by adding NaOH 
solution (3.0 M). The TEMPO-oxidized pulp was repeatedly washed 
with DI water until the pH returned back to 7.0. Afterward, the pulp was 
disassembled in a microfluidizer processor (Microfluidics M-110EH), 
and the concentration of CNF dispersion was about 10 mg ml−1.

Preparation of gelatin solution
A total of 8.0 g of gelatin was dissolved in 1.0 litre of DI water followed 
by continuous stirring for 48 h, and the concentration of gelatin solu-
tion was 8.0 mg ml−1.

Preparation of glycerol solution
A total of 8.4 g of glycerol was dissolved in 1.0 litre of DI water followed 
by continuous stirring for 12 h, and the concentration of glycerol solu-
tion was 8.4 mg ml−1.

Fabrication of all-natural nanocomposite films via an 
automated pipetting robot
An automated pipetting robot (Opentrons OT-2) was operated to pre-
pare different mixtures with varying MMT/CNF/gelatin/glycerol ratios. 
For each mixture, the dispersions/solutions of MMT nanosheets, CNFs, 
gelatin and glycerol were mixed at different volumes. Afterward, the 
robot-prepared mixtures were vortexed at 3,000 rpm for 30 s and 
placed in a vacuum desiccator to remove air bubbles. Then, the mix-
tures were cast into a flat, polystyrene-based container at 40 °C and 
air dried for 48 h.

Identification of A-grade nanocomposites
Each nanocomposite film was subject to detachment and flatness 
testing after it dried. Regarding detachability, except for samples that 
can be clearly labelled as detachable or non-detachable (Supplemen-
tary Fig. 38a), the mechanical delamination tests were conducted to 
measure the binding energies of nanocomposite films on hydrophobic 

polystyrene substrates. As shown in Supplementary Fig. 39. all the 
detachable samples exhibited the binding energies of <0.4 J cm−2, while 
the undetachable ones were with the binding energies >0.6 J cm−2. 
Thus, the threshold binding energy was set to be 0.5 J cm−2 to classify 
the detachability of nanocomposite films. Regarding flatness, except 
for samples that can be clearly labelled as flat or curved (Supplemen-
tary Fig. 38b), a high-speed laser scanning confocal microscope was 
employed to characterize the roughness of nanocomposite films. As 
demonstrated in Supplementary Fig. 40a, the nanocomposite films 
considered ‘flat’ exhibited height differences of <200 µm. Meanwhile, 
those considered ‘curved’ typically showcased height differences of 
>500 µm (Supplementary Fig. 40b). Once the detachment and flatness 
tests were finished, only the detachable and flat samples were identified 
as A-grade nanocomposites.

Determination of SVM classifier accuracy
After constructing the SVM classifier, we examined its prediction 
accuracy using a set of testing data points. As shown in Supplementary 
Table 3, a total of 35 MMT/CNF/gelatin/glycerol ratios were randomly 
selected, and 35 nanocomposite films were fabricated according to the 
established procedure. Detachment and flatness tests were conducted 
to categorize these nanocomposite films into different grades. Sub-
sequently, the MMT/CNF/gelatin/glycerol ratios (that is, composition 
labels) were input into the SVM classifier to obtain the predicted grades, 
which were then compared with the experimental results. In this study, 
the SVM classifier accurately predicted the grades for 33 out of the 
35 nanocomposite films, resulting in a prediction accuracy of 94.3%.

Determination of ANN-based prediction model accuracy
After constructing the ANN-based prediction model, we examined its 
prediction accuracy using a set of testing data points.

The deviation between model-predicted property labels  
and actual property values was quantified using a MRE, defined in 
equation (3),

MRE = 1
N

N
∑
i=1

||||
outputi − Ei

Ei
||||
, (3)

where N is the cumulative number of testing data, outputi  is the 
model-predicted property labels based on a testing datum (i), Ei is the 
actual property values of a testing datum (i). A smaller MRE value 
indicates higher prediction accuracy and vice versa.

Film thickness characterization
The thickness of each all-natural nanocomposite was initially deter-
mined using a digital micrometre (293-340-30, Mitutoyo). For each strip 
sample used in the mechanical test, the nanocomposite thickness was 
gauged at three separate points, and the average thickness value was 
derived. Furthermore, the thickness of the all-natural nanocomposites 
was verified using a field emission scanning electron microscope (Tecan 
XEIA) operating at 15.0 kV. Cross-sectional SEM images were taken, 
followed by thickness measurements to validate the earlier readings.

Transmittance spectrum characterization
The transmittance spectra of all-natural nanocomposites were meas-
ured with an ultraviolet (UV)–visible spectrometer from 250 to 
1,100 nm (UV-3600 Plus, PerkinElmer) equipped with an integrating 
sphere. The transmittance values at 365, 550 and 950 nm were extracted 
as the ‘spectral’ labels (TUV, TVis and TIR), respectively.

Fire resistance characterization
The fire resistances of the all-natural nanocomposites were assessed 
using a horizontal combustibility testing method, modified from the 
standard test method (ASTM D6413)59. The all-natural nanocomposites 
were cut into 1 cm × 1 cm squares, and then they were exposed to the 
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flame of an ethanol burner for 30 s (with a flame temperature ranging 
from 600 °C o 850 °C)60. The fire resistance of the all-natural nanocom-
posites was quantified in terms of RR. Three replicates were conducted, 
and the average RR values were recorded as the fire labels.

Mechanical property characterization
The stress–strain curves of the all-natural nanocomposites were deter-
mined using a mechanical testing machine (Instron 68SC-05) fitted 
with a 500-N load cell. After calibrating the load cell, the all-natural 
nanocomposites were cut into 3 cm × 1 cm stripes and subject to a 
tensile test at an extension rate of 0.02 mm s−1. The tensile tests started 
with an initial fixture gap of 2 cm. Three replicates were conducted for 
each all-natural nanocomposites.

Materials characterization
The surface functional groups of all-natural nanocomposites were 
characterized using a Fourier transform infrared spectroscopy (FT-IR, 
Thermo Nicolet NEXUS 670).

Biocompatibility tests of all-natural nanocomposites
The cytotoxic effects of all-natural nanocomposites on the cultured cells 
(that is, L929 cells) were determined by complying with ISO 10993. Six 
all-natural nanocomposites with different MMT/CNF/gelatin/glycerol 
ratios were incubated with Dulbecco’s modified Eagle medium (DMEM, 
Gibco) supplemented with foetal bovine serum (Biological Industries) 
at 37 °C for 24 h, and the media were then extracted for cell culture. L929 
cells were then seeded in 96-well cell culture plates at the density of 1 × 104 
cells per well and incubated in a standard cell incubation environment 
with 5% CO2. After 24 h of cell culture, the culture media were removed 
and replaced with the extracts of all-natural nanocomposites followed by 
additional 24-h incubation. After 24 h, the culture media were withdrawn, 
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solu-
tion was added to each well. Then, the cell culture plate was incubated for 
2 h at 37 °C. After the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide solution was discarded, 200 ml of dimethyl sulfoxide was added 
to dissolve the formazan crystals. The optical density of the formazan 
solution was read by an enzyme-linked immunosorbent assay plate reader 
at 570 nm with a reference wavelength of 650 nm.

The cytotoxicity of all-natural nanocomposites was evaluated by a 
cytotoxicity detection kit (Roche). First, the L929 cells were incubated 
with the all-natural nanocomposite extracts at 37 °C for 24 h, and the 
medium (100 µl) was collected and incubated with the reaction mixture 
from the kit following the manufacturer’s instructions. LDH content 
was assessed by enzyme-linked immunosorbent assay and read at an 
absorbance of 490 nm in a plate reader with a reference wavelength of 
630 nm. To further confirm the cytotoxicity of all-natural nanocom-
posites, a fluorescence-based live/dead assay (LIVE/DEAD kit, Life) was 
performed. After the L929 cells were cultured with the extracts for 24 h, 
calcein was mixed with ethidium homodimer-1 according to the manu-
facturer’s instructions, and the dye (100 µl) was mixed with the retained 
medium (100 µl), which was added to each well and incubated at 37 °C 
for 15 min. After the incubation, we used an inverted microscope (Leica 
DMi8) to capture the images of live (green) and dead (red) cells. Fluo-
rescence with excitation wavelengths of 488 nm and 561 nm was used 
to visualize the green (515 nm) and red (635 nm) fluorescence signals 
emitted by calcein and ethidium homodimer-1, respectively. ImageJ 
software was employed to calculate the proportion of live and dead 
cell areas. The relative percentages of fluorescence intensity were also 
determined. ImageJ was utilized to quantify the areas of red and green 
fluorescence, which produced average values. These numerical values 
were subsequently used in the quantification formula to determine the 
fluorescence intensity of live/dead cells in equation (4):

Fluorescence intensity = (Live/Dead)/(Live + Dead) × 100% (4)

MD simulations
The full atomistic simulations utilized the ReaxFF potential within the 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
simulation package61. The ReaxFF potential is widely used to describe 
chemical bonds and weak interactions of cellulose chains and MMT 
nanosheets62,63. As shown in Supplementary Fig. 41a, the MD model 
of the MMT/CNF nanocomposite configured as a multilayered micro-
structure comprising alternating CNF chains and MMT nanosheets, 
similar to the SEM observations in Supplementary Fig. 41b. The length 
of the cellulose chains was set to 104 Å, and the scale of the MMT 
nanosheets was randomly set between 30 Å and 60 Å, corresponding 
to the length scale ratio in the experiments (LCNF:LMMT = 1:2). The cel-
lulose chains and MMT nanosheets were passivated by polar hydro-
gens or –OH groups. The entire system was equilibrated under the 
isothermal-isobaric ensemble (that is, NPT ensemble) at 300 K and 
0 atm, using the Nose ́–Hoover thermostat and barostat. Then, the 
micro-canonical ensemble was applied in the stretching process. The 
timestep was set as 0.5 fs, and the periodic boundary conditions were 
applied in all directions (x, y and z) for all models. To better under-
stand intermolecular interactions, both cellulose chains and MMT 
nanosheets were randomly arranged in alignment in the periodical 
box. All calculations were relaxed using the conjugate gradient algo-
rithm to minimize the total energy of the system until the total atomic 
forces were converged to less than 10–9 eV Å–1.

Data availability
The data that used for model training are available from the Zenodo 
repository Data for: Machine Intelligence-Accelerated Discovery of 
All-Natural Plastic Substitutes, accessible via https://doi.org/10.5281/
zenodo.7916360. The data that support the plots within this paper 
and other findings of this study are available from the corresponding 
authors upon reasonable request.

Code availability
The Python code to implement the ML tasks within this study are  
available from GitHub (https://github.com/chentl/MatAL).
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